scholarly journals Differential Microstrip Sensor for Complex Permittivity Characterization of Organic Fluid Mixtures

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7865
Author(s):  
Amer Abbood al-Behadili ◽  
Iulia Andreea Mocanu ◽  
Teodor Mihai Petrescu ◽  
Taha A. Elwi

A microstrip highly sensitive differential sensor for complex permittivity characterization of urine samples was designed, fabricated and tested. The sensing area contains two pairs of open-stub resonators, and the working frequency of the unloaded sensor is 1.25 GHz. The sensor is easily implemented on an affordable substrate FR-4 Epoxy with a thickness of 1.6 mm. A Teflon beaker is mounted on the sensor without affecting the measurements. Numerically, liquid mixtures of water and urine at different percentages were introduced to the proposed sensor to evaluate the frequency variation. The percentage of water content in the mixture varied from 0% (100% urine) to 100% (0% urine) with a step of 3.226%, thus giving 32 data groups of the simulated results. Experimentally, the mixtures of: 0% urine (100% water), 20% urine (80% water), 33% urine (66% water), 50% urine (50% water), 66% urine (33% water), and 100% urine (0% water) were considered for validation. The complex permittivity of the considered samples was evaluated using a nonlinear least square curve fitting in MATLAB in order to realize a sensing sensitivity of about 3%.

2002 ◽  
Vol 10 (5) ◽  
pp. 1451-1458 ◽  
Author(s):  
Sophie Martel ◽  
Jean-Louis Clément ◽  
Agnès Muller ◽  
Marcel Culcasi ◽  
Sylvia Pietri

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 139
Author(s):  
Johanna Detzner ◽  
Elisabeth Krojnewski ◽  
Gottfried Pohlentz ◽  
Daniel Steil ◽  
Hans-Ulrich Humpf ◽  
...  

Human kidney epithelial cells are supposed to be directly involved in the pathogenesis of the hemolytic–uremic syndrome (HUS) caused by Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC). The characterization of the major and minor Stx-binding glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), respectively, of primary human renal cortical epithelial cells (pHRCEpiCs) revealed GSLs with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Using detergent-resistant membranes (DRMs) and non-DRMs, Gb3Cer and Gb4Cer prevailed in the DRM fractions, suggesting their association with microdomains in the liquid-ordered membrane phase. A preference of Gb3Cer and Gb4Cer endowed with C24:0 fatty acid accompanied by minor monounsaturated C24:1-harboring counterparts was observed in DRMs, whereas the C24:1 fatty acid increased in relation to the saturated equivalents in non-DRMs. A shift of the dominant phospholipid phosphatidylcholine with saturated fatty acids in the DRM to unsaturated species in the non-DRM fractions correlated with the GSL distribution. Cytotoxicity assays gave a moderate susceptibility of pHRCEpiCs to the Stx1a and Stx2a subtypes when compared to highly sensitive Vero-B4 cells. The results indicate that presence of Stx-binding GSLs per se and preferred occurrence in microdomains do not necessarily lead to a high cellular susceptibility towards Stx.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prashanth Gopalan ◽  
Yunshan Wang ◽  
Berardi Sensale-Rodriguez

AbstractWhile terahertz spectroscopy can provide valuable information regarding the charge transport properties in semiconductors, its application for the characterization of low-conductive two-dimensional layers, i.e., σs <  < 1 mS, remains elusive. This is primarily due to the low sensitivity of direct transmission measurements to such small sheet conductivity levels. In this work, we discuss harnessing the extraordinary optical transmission through gratings consisting of metallic stripes to characterize such low-conductive two-dimensional layers. We analyze the geometric tradeoffs in these structures and provide physical insights, ultimately leading to general design guidelines for experiments enabling non-contact, non-destructive, highly sensitive characterization of such layers.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


2021 ◽  
Vol 22 (11) ◽  
pp. 6148
Author(s):  
Matteo Miceli ◽  
Silvana Casati ◽  
Pietro Allevi ◽  
Silvia Berra ◽  
Roberta Ottria ◽  
...  

A novel bioluminescent Monoacylglycerol lipase (MAGL) substrate 6-O-arachidonoylluciferin, a D-luciferin derivative, was synthesized, physico-chemically characterized, and used as highly sensitive substrate for MAGL in an assay developed for this purpose. We present here a new method based on the enzymatic cleavage of arachidonic acid with luciferin release using human Monoacylglycerol lipase (hMAGL) followed by its reaction with a chimeric luciferase, PLG2, to produce bioluminescence. Enzymatic cleavage of the new substrate by MAGL was demonstrated, and kinetic constants Km and Vmax were determined. 6-O-arachidonoylluciferin has proved to be a highly sensitive substrate for MAGL. The bioluminescence assay (LOD 90 pM, LOQ 300 pM) is much more sensitive and should suffer fewer biological interferences in cells lysate applications than typical fluorometric methods. The assay was validated for the identification and characterization of MAGL modulators using the well-known MAGL inhibitor JZL184. The use of PLG2 displaying distinct bioluminescence color and kinetics may offer a highly desirable opportunity to extend the range of applications to cell-based assays.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169427 ◽  
Author(s):  
Sophie Laget ◽  
Lucile Broncy ◽  
Katia Hormigos ◽  
Dalia M. Dhingra ◽  
Fatima BenMohamed ◽  
...  

2014 ◽  
Vol 47 (6) ◽  
pp. 2078-2080 ◽  
Author(s):  
Monika Witala ◽  
Jun Han ◽  
Andreas Menzel ◽  
Kim Nygård

It is shown that small-angle X-ray scattering from binary liquid mixtures close to the critical point of demixing can be used forin situcharacterization of beam-induced heating of liquid samples. For demonstration purposes, the proposed approach is applied on a well studied critical mixture of water and 2,6-lutidine. Given a typical incident X-ray flux at a third-generation synchrotron light source and using a 1.5 mm-diameter glass capillary as sample container, a beam-induced local temperature increase of 0.45 ± 0.10 K is observed.


2013 ◽  
Vol 438 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Keiichi Nakano ◽  
Shogo Tamura ◽  
Kohei Otuka ◽  
Noriyasu Niizeki ◽  
Masahiko Shigemura ◽  
...  

2008 ◽  
Vol 55 ◽  
pp. 150-153
Author(s):  
Mun Ja Kim ◽  
Sung Min Park ◽  
Tae Young Lee ◽  
Sang Hyun Park ◽  
Jin Young Kim ◽  
...  

For the growth of Electroluminescent (EL) device market, the attention of many researchers is centered on improving the properties such as brightness, power consumption, device reliability, etc. The powder EL device is one of solutions for the easy mass production, the simplification of structure, and low cost. Although the powder process is the solution, that has the problem with the poor brightness than the film process. So, we focused on increasing the brightness of powder EL device. The emissive layer was made up the composites adding metal oxide nanopowder such as TiO2 and ZnO to powder phosphors. As the data of previous researcher, the TiO2 and ZnO had the different dominating traps by photovoltage measure, that is, TiO2 show hole traps, ZnO show electron traps [1]. The brightness of powder EL device proportions to the high electricfield formation. The TiO2 or ZnO in the powder phosphor composite can help the emission that may be advantageous to form high electricfield at low voltage. The EL devices with green ZnS phosphor were fabricated using spin coating method. The effect of TiO2 and ZnO on the luminescent property of EL device was investigated. The brightness was obtained as applied driving voltage at 400 Hz and frequency variation at 50 V.


Sign in / Sign up

Export Citation Format

Share Document