scholarly journals Study on the Optimization of Hyperspectral Characteristic Bands Combined with Monitoring and Visualization of Pepper Leaf SPAD Value

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 183
Author(s):  
Ziran Yuan ◽  
Yin Ye ◽  
Lifei Wei ◽  
Xin Yang ◽  
Can Huang

Chlorophyll content is an important indicator of plant photosynthesis, which directly affects the growth and yield of crops. Using hyperspectral imaging technology to quickly and non-destructively estimate the soil plant analysis development (SPAD) value of pepper leaf and its distribution inversion is of great significance for agricultural monitoring and precise fertilization during pepper growth. In this study, 150 samples of pepper leaves with different leaf positions were selected, and the hyperspectral image data and SPAD value were collected for the sampled leaves. The correlation coefficient, stability competitive adaptive reweighted sampling (sCARS), and iteratively retaining informative variables (IRIV) methods were used to screen characteristic bands. These were combined with partial least-squares regression(PLSR), extreme gradient boosting (XGBoost), random forest regression(RFR), and gradient boosting decision tree(GBDT) to build regression models. The developed model was then used to build the inversion map of pepper leaf chlorophyll distribution. The research results show that: (1) The IRIV-XGBoost model demonstrates the most comprehensive performance in the modeling and inversion stages, and its , , and are 0.81, 2.76, and 2.30, respectively; (2) The IRIV-XGBoost model was used to calculate the SPAD value of each pixel of pepper leaves, and to subsequently invert the chlorophyll distribution map of pepper leaves at different leaf positions, which can provide support for the intuitive monitoring of crop growth and lay the foundation for the development of hyperspectral field dynamic monitoring sensors.

2021 ◽  
Vol 13 (8) ◽  
pp. 1595
Author(s):  
Chunhua Li ◽  
Lizhi Zhou ◽  
Wenbin Xu

Wetland vegetation aboveground biomass (AGB) directly indicates wetland ecosystem health and is critical for water purification, carbon cycle, and biodiversity conservation. Accurate AGB estimation is essential for the monitoring and supervision of ecosystems, especially in seasonal floodplain wetlands. This paper explored the capability of spectral and texture features from the Sentinel-2 Multispectral Instrument (MSI) for modeling grassland AGB using random forest (RF) and extreme gradient boosting (XGBoost) algorithms in Shengjin Lake wetland (a Ramsar site). We use five-fold cross-validation to verify the model effectiveness. The results indicated that the RF and XGBoost models had a robust and efficient performance (with root mean square error (RMSE) of 126.571 g·m−2 and R2 of 0.844 for RF, RMSE of 112.425 g·m−2 and R2 of 0.869 for XGBoost), and the XGBoost models, by contrast, performed better. Both traditional and red-edge vegetation indices (VIs) obtained satisfactory results of AGB estimation (RMSE = 127.936 g·m−2, RMSE = 125.879 g·m−2 in XGBoost models, respectively), with the red-edge VIs contributed more to the AGB models. Moreover, we selected eight gray-level co-occurrence matrix (GLCM) textures calculated by four processing window sizes using the mean value of four offsets, and further analyzed the results of three analysis sets. Textures derived from traditional and red-edge bands using a 7 × 7 window size performed better in biomass estimation. This finding suggested that textures derived from the traditional bands were as important as the red-edge bands. The introduction of textures moderately improved the accuracy of modeling AGB, whereas the use of textures alo ne was not satisfactory. This research demonstrated that using the Sentinel-2 MSI and the two ensemble algorithms is an effective method for long-term dynamic monitoring and assessment of grass AGB in seasonal floodplain wetlands, which can support sustainable management and carbon accounting of wetland ecosystems.


OENO One ◽  
2021 ◽  
Vol 55 (4) ◽  
pp. 19-33
Author(s):  
Lira Souza Gonzaga ◽  
Susan E. P. Bastian ◽  
Dimitra L. Capone ◽  
Ranaweera K. R. Ranaweera ◽  
David W. Jeffery

Understanding how wine compositional traits can be related to sensory profiles is an important and ongoing challenge. Enhancing knowledge in this area could assist producers to select practices that deliver wines of the desired style and sensory specifications. This work reports the use of spectrofluorometry in conjunction with chemometrics for prediction, correlation, and classification based on sensory descriptors obtained using a rate-all-that-apply sensory assessment of Cabernet-Sauvignon wines (n = 26). Sensory results were first subjected to agglomerative hierarchical cluster analysis, which separated the wines into five clusters represented by different sensory profiles. The clusters were modelled in conjunction with excitation-emission matrix (EEM) data from fluorescence measurements using extreme gradient boosting discriminant analysis. This machine learning technique was able to classify the wines into the pre-defined sensory clusters with 100 % accuracy. Parallel factor analysis of the EEMs identified four main fluorophore components that were tentatively assigned as catechins, phenolic aldehydes, anthocyanins, and resveratrol (C1, C2, C3, and C4, respectively). Association of these four components with different sensory descriptors was possible through multiple factor analysis, with C1 relating to ‘dark fruits’ and ‘savoury’, C2 with ‘barnyard’, C3 with ‘cooked vegetables’ and ‘vanilla/chocolate’, and C4 with ‘barnyard’ and a lack of C1 descriptors. Partial least squares regression modelling was undertaken with EEM data and sensory results, with a model for perceived astringency being able to predict the panel scores with 68.1 % accuracy. These encouraging outcomes pave the way for further studies that relate sensory traits to fluorescence data and move research closer to the ultimate goal of predicting wine sensory expression from a small number of compositional factors.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 487
Author(s):  
Maciej Rzychoń ◽  
Alina Żogała ◽  
Leokadia Róg

The hemispherical temperature (HT) is the most important indicator representing ash fusion temperatures (AFTs) in the Polish industry to assess the suitability of coal for combustion as well as gasification purposes. It is important, for safe operation and energy saving, to know or to be able to predict value of this parameter. In this study a non-linear model predicting the HT value, based on ash oxides content for 360 coal samples from the Upper Silesian Coal Basin, was developed. The proposed model was established using the machine learning method—extreme gradient boosting (XGBoost) regressor. An important feature of models based on the XGBoost algorithm is the ability to determine the impact of individual input parameters on the predicted value using the feature importance (FI) technique. This method allowed the determination of ash oxides having the greatest impact on the projected HT. Then, the partial dependence plots (PDP) technique was used to visualize the effect of individual oxides on the predicted value. The results indicate that proposed model could estimate value of HT with high accuracy. The coefficient of determination (R2) of the prediction has reached satisfactory value of 0.88.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 815 ◽  
Author(s):  
Xiaodan Zou ◽  
Anjie Liang ◽  
Bizhi Wu ◽  
Jun Su ◽  
Renhua Zheng ◽  
...  

Obtaining accurate measurements of tree height and diameter at breast height (DBH) in forests to evaluate the growth rate of cultivars is still a significant challenge, even when using light detection and ranging (LiDAR) and three-dimensional (3-D) modeling. As an alternative, we provide a novel high-throughput strategy for predicting the biomass of forests in the field by vegetation indices. This study proposes an integrated pipeline methodology to measure the biomass of different tree cultivars in plantation forests with high crown density, which combines unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Using a planation of Cunninghamia lanceolate, which is commonly known as Chinese fir, in Fujian, China, images were collected while using a hyperspectral camera. Vegetation indices and modeling were processed in Python using decision trees, random forests, support vector machine, and eXtreme Gradient Boosting (XGBoost) third-party libraries. The tree height and DBH of 2880 samples were manually measured and clustered into three groups—“Fast”, “median”, and “normal” growth groups—and 19 vegetation indices from 12,000 pixels were abstracted as the input of features for the modeling. After modeling and cross-validation, the classifier that was generated by random forests had the best prediction accuracy when compared to other algorithms (75%). This framework can be applied to other tree species to make management and business decisions.


Author(s):  
Xiaodan Zou ◽  
Anjie Liang ◽  
Bizhi Wu ◽  
Jun Su ◽  
Renhua Zheng ◽  
...  

Accurate measurements of tree height and diameter at breast height (DBH) in forests to evaluate the growth rate of cultivars is still a significant challenge, even when using LiDAR and 3-D modeling. We propose an integrated pipeline methodology to measure the biomass of different tree cultivars in plantation forests with high crown density which that combines unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Using a planation of Cunninghamia lanceolate, commonly known as Chinese fir, in Fujian, China, images were collected using a hyperspectral camera and orthorectified in HiSpectral Stitcher. Vegetation indices and modeling were processed in Python using decision trees, random forests, support vector machine, and eXtreme Gradient Boosting (XGBoost) third-party libraries. Tree height and DBH of 2880 samples were measured manually and clustering into three groups: “fast growth,” “median,” growth and “normal” growth group, and 19 vegetation indices from 12,000 pixels were abstracted as the input of features for the modeling. After modeling and cross-validation, the classifier generated by random forests had the best prediction accuracy compare to other algorisms (75%). This framework can be applied to other tree species to make management and business decisions.


2019 ◽  
Author(s):  
Kasper Van Mens ◽  
Joran Lokkerbol ◽  
Richard Janssen ◽  
Robert de Lange ◽  
Bea Tiemens

BACKGROUND It remains a challenge to predict which treatment will work for which patient in mental healthcare. OBJECTIVE In this study we compare machine algorithms to predict during treatment which patients will not benefit from brief mental health treatment and present trade-offs that must be considered before an algorithm can be used in clinical practice. METHODS Using an anonymized dataset containing routine outcome monitoring data from a mental healthcare organization in the Netherlands (n = 2,655), we applied three machine learning algorithms to predict treatment outcome. The algorithms were internally validated with cross-validation on a training sample (n = 1,860) and externally validated on an unseen test sample (n = 795). RESULTS The performance of the three algorithms did not significantly differ on the test set. With a default classification cut-off at 0.5 predicted probability, the extreme gradient boosting algorithm showed the highest positive predictive value (ppv) of 0.71(0.61 – 0.77) with a sensitivity of 0.35 (0.29 – 0.41) and area under the curve of 0.78. A trade-off can be made between ppv and sensitivity by choosing different cut-off probabilities. With a cut-off at 0.63, the ppv increased to 0.87 and the sensitivity dropped to 0.17. With a cut-off of at 0.38, the ppv decreased to 0.61 and the sensitivity increased to 0.57. CONCLUSIONS Machine learning can be used to predict treatment outcomes based on routine monitoring data.This allows practitioners to choose their own trade-off between being selective and more certain versus inclusive and less certain.


Author(s):  
Mohammad Hamim Zajuli Al Faroby ◽  
Mohammad Isa Irawan ◽  
Ni Nyoman Tri Puspaningsih

Protein Interaction Analysis (PPI) can be used to identify proteins that have a supporting function on the main protein, especially in the synthesis process. Insulin is synthesized by proteins that have the same molecular function covering different but mutually supportive roles. To identify this function, the translation of Gene Ontology (GO) gives certain characteristics to each protein. This study purpose to predict proteins that interact with insulin using the centrality method as a feature extractor and extreme gradient boosting as a classification algorithm. Characteristics using the centralized method produces  features as a central function of protein. Classification results are measured using measurements, precision, recall and ROC scores. Optimizing the model by finding the right parameters produces an accuracy of  and a ROC score of . The prediction model produced by XGBoost has capabilities above the average of other machine learning methods.


2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


Author(s):  
Irfan Ullah Khan ◽  
Nida Aslam ◽  
Malak Aljabri ◽  
Sumayh S. Aljameel ◽  
Mariam Moataz Aly Kamaleldin ◽  
...  

The COVID-19 outbreak is currently one of the biggest challenges facing countries around the world. Millions of people have lost their lives due to COVID-19. Therefore, the accurate early detection and identification of severe COVID-19 cases can reduce the mortality rate and the likelihood of further complications. Machine Learning (ML) and Deep Learning (DL) models have been shown to be effective in the detection and diagnosis of several diseases, including COVID-19. This study used ML algorithms, such as Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbor (KNN) and DL model (containing six layers with ReLU and output layer with sigmoid activation), to predict the mortality rate in COVID-19 cases. Models were trained using confirmed COVID-19 patients from 146 countries. Comparative analysis was performed among ML and DL models using a reduced feature set. The best results were achieved using the proposed DL model, with an accuracy of 0.97. Experimental results reveal the significance of the proposed model over the baseline study in the literature with the reduced feature set.


2021 ◽  
Vol 13 (6) ◽  
pp. 1147
Author(s):  
Xiangqian Li ◽  
Wenping Yuan ◽  
Wenjie Dong

To forecast the terrestrial carbon cycle and monitor food security, vegetation growth must be accurately predicted; however, current process-based ecosystem and crop-growth models are limited in their effectiveness. This study developed a machine learning model using the extreme gradient boosting method to predict vegetation growth throughout the growing season in China from 2001 to 2018. The model used satellite-derived vegetation data for the first month of each growing season, CO2 concentration, and several meteorological factors as data sources for the explanatory variables. Results showed that the model could reproduce the spatiotemporal distribution of vegetation growth as represented by the satellite-derived normalized difference vegetation index (NDVI). The predictive error for the growing season NDVI was less than 5% for more than 98% of vegetated areas in China; the model represented seasonal variations in NDVI well. The coefficient of determination (R2) between the monthly observed and predicted NDVI was 0.83, and more than 69% of vegetated areas had an R2 > 0.8. The effectiveness of the model was examined for a severe drought year (2009), and results showed that the model could reproduce the spatiotemporal distribution of NDVI even under extreme conditions. This model provides an alternative method for predicting vegetation growth and has great potential for monitoring vegetation dynamics and crop growth.


Sign in / Sign up

Export Citation Format

Share Document