scholarly journals PLS-R Calibration Models for Wine Spirit Volatile Phenols Prediction by Near-Infrared Spectroscopy

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 286
Author(s):  
Ofélia Anjos ◽  
Ilda Caldeira ◽  
Tiago A. Fernandes ◽  
Soraia Inês Pedro ◽  
Cláudia Vitória ◽  
...  

Near-infrared spectroscopic (NIR) technique was used, for the first time, to predict volatile phenols content, namely guaiacol, 4-methyl-guaiacol, eugenol, syringol, 4-methyl-syringol and 4-allyl-syringol, of aged wine spirits (AWS). This study aimed to develop calibration models for the volatile phenol’s quantification in AWS, by NIR, faster and without sample preparation. Partial least square regression (PLS-R) models were developed with NIR spectra in the near-IR region (12,500–4000 cm−1) and those obtained from GC-FID quantification after liquid-liquid extraction. In the PLS-R developed method, cross-validation with 50% of the samples along a validation test set with 50% of the remaining samples. The final calibration was performed with 100% of the data. PLS-R models with a good accuracy were obtained for guaiacol (r2 = 96.34; RPD = 5.23), 4-methyl-guaiacol (r2 = 96.1; RPD = 5.07), eugenol (r2 = 96.06; RPD = 5.04), syringol (r2 = 97.32; RPD = 6.11), 4-methyl-syringol (r2 = 95.79; RPD = 4.88) and 4-allyl-syringol (r2 = 95.97; RPD = 4.98). These results reveal that NIR is a valuable technique for the quality control of wine spirits and to predict the volatile phenols content, which contributes to the sensory quality of the spirit beverages.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 335
Author(s):  
Ning Ai ◽  
Yibo Jiang ◽  
Sainab Omar ◽  
Jiawei Wang ◽  
Luyue Xia ◽  
...  

Near-infrared (NIR) spectroscopy and characteristic variables selection methods were used to develop a quick method for the determination of cellulose, hemicellulose, and lignin contents in Sargassum horneri. Calibration models for cellulose, hemicellulose, and lignin in Sargassum horneri were established using partial least square regression methods with full variables (full-PLSR). The PLSR calibration models were established by four characteristic variables selection methods, including interval partial least square (iPLS), competitive adaptive reweighted sampling (CARS), correlation coefficient (CC), and genetic algorithm (GA). The results showed that the performance of the four calibration models, namely iPLS-PLSR, CARS-PLSR, CC-PLSR, and GA-PLSR, was better than the full-PLSR calibration model. The iPLS method was best in the performance of the models. For iPLS-PLSR, the determination coefficient (R2), root mean square error (RMSE), and residual predictive deviation (RPD) of the prediction set were as follows: 0.8955, 0.8232%, and 3.0934 for cellulose, 0.8669, 0.4697%, and 2.7406 for hemicellulose, and 0.7307, 0.7533%, and 1.9272 for lignin, respectively. These findings indicate that the NIR calibration models can be used to predict cellulose, hemicellulose, and lignin contents in Sargassum horneri quickly and accurately.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 885
Author(s):  
Sergio Ghidini ◽  
Luca Maria Chiesa ◽  
Sara Panseri ◽  
Maria Olga Varrà ◽  
Adriana Ianieri ◽  
...  

The present study was designed to investigate whether near infrared (NIR) spectroscopy with minimal sample processing could be a suitable technique to rapidly measure histamine levels in raw and processed tuna fish. Calibration models based on orthogonal partial least square regression (OPLSR) were built to predict histamine in the range 10–1000 mg kg−1 using the 1000–2500 nm NIR spectra of artificially-contaminated fish. The two models were then validated using a new set of naturally contaminated samples in which histamine content was determined by conventional high-performance liquid chromatography (HPLC) analysis. As for calibration results, coefficient of determination (r2) > 0.98, root mean square of estimation (RMSEE) ≤ 5 mg kg−1 and root mean square of cross-validation (RMSECV) ≤ 6 mg kg−1 were achieved. Both models were optimal also in the validation stage, showing r2 values > 0.97, root mean square errors of prediction (RMSEP) ≤ 10 mg kg−1 and relative range error (RER) ≥ 25, with better results showed by the model for processed fish. The promising results achieved suggest NIR spectroscopy as an implemental analytical solution in fish industries and markets to effectively determine histamine amounts.


2005 ◽  
Vol 13 (3) ◽  
pp. 147-154 ◽  
Author(s):  
Wolfgang Becker ◽  
Norbert Eisenreich

Near infrared spectroscopy was used as an in-line control system for the measurement of polypropylene filled with different amounts of Irganox additives. For this purpose transmission probes were installed in an extruder. The probes can withstand temperatures up to 300°C and pressures up to 60 MPa. Transmission spectra of polypropylene mixed with an Irganox additive were recorded. PCA score plot was carried out revealing the influence of varying conditions for the mixing of the sample preparation. Prediction models were generated with partial least square regression which resulted in a model which estimated Irganox with a coefficient of detremination of 0.984 and a root mean square error of prediction of 0.098%. Furthermore the possibilities for controlling process conditions by measuring transmission at a specific wavelength were shown.


2021 ◽  
Author(s):  
Silvana Nisgoski ◽  
Thaís A P Gonçalves ◽  
Júlia Sonsin-Oliveira ◽  
Adriano W Ballarin ◽  
Graciela I B Muñiz

Abstract The illegal charcoal trade is an internationally well-known forest crime. In Brazil, government agents try to control it using the document of forest origin (DOF). To confirm a load’s legality, the agents must compare it with the declared content of the DOF. However, to identify charcoal is difficult even for specialists in wood anatomy. Hence, new technologies would facilitate the agents’ work. Near-infrared spectroscopy (NIR) provides a rapid and precise response to differentiate carbonized species. Considering the rich Brazilian flora, NIR studies are still underdeveloped. Our work aimed to differentiate charcoals of seven eucalypts and 10 Cerrado species based on NIR analysis and to add information to a charcoal database. Data were collected with a spectrophotometer in reflectance mode. Partial least square regression with discriminant analysis (PLS-DA) and a linear discriminant analysis (LDA) was applied to confirm the performance and potential of NIR spectra to distinguish native Cerrado species from eucalyptus species. Wavenumbers from 4,000 to 6,000 cm−1 and transversal surface presented the best results. NIR had the potential to distinguish eucalypt charcoals from Cerrado species and in comparison to reference samples. NIR is a potential tool for forestry supervision to guarantee the sustainability of the charcoal supply in Brazil and countries with similar conditions. Study Implications It is a challenge to protect the Cerrado biome against deforestation for charcoal production. The application of new technologies such as near-infrared spectroscopy (NIR) for charcoal identification might improve the work of government agents. In this article, we studied the spectra of Cerrado and eucalypt species. Our results present good separation between the analyzed groups. The main goal is to develop a reliable NIR database that would be useful in the practical work of agents. The database will be available for all control agencies, and future training will be done for a rapid initial evaluation in the field.


1995 ◽  
Vol 78 (3) ◽  
pp. 802-806 ◽  
Author(s):  
José Louis Rodriguez-Otero ◽  
Maria Hermida ◽  
Alberto Cepeda

Abstract Near-infrared reflectance (NIR) spectroscopy was used to analyze fat, protein, and total solids in cheese without any sample treatment. A set of 92 samples of cow’s milk cheese was used for instrument calibration by principal components analysis and modified partial least-square regression. The following statistical values were obtained: standard error of calibration (SEC) = 0.388 and squared correlation coefficient (R2) = 0.99 for fat, SEC = 0.397 and R2 = 0.98 for protein, and SEC = 0.412 and R2 = 0.99 for total solids. To validate the calibration, an independent set of 25 cheese samples of the same type was used. Standard errors of validation were 0.47,0.50, and 0.61 for fat, protein, and total solids, respectively, and hf for the regression of measurements by reference methods versus measurements by NIR spectroscopy was 0.98 for the 3 components.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 261 ◽  
Author(s):  
Maria Marques ◽  
Ana Álvarez ◽  
Pilar Carral ◽  
Iris Esparza ◽  
Blanca Sastre ◽  
...  

Contents of soil organic carbon (SOC), gypsum, CaCO3, and quartz, among others, were analyzed and related to reflectance features in visible and near-infrared (VIS/NIR) range, using partial least square regression (PLSR) in ParLes software. Soil samples come from a sloping olive grove managed by frequent tillage in a gypsiferous area of Central Spain. Samples were collected in three different layers, at 0–10, 10–20 and 20–30 cm depth (IPCC guidelines for Greenhouse Gas Inventories Programme in 2006). Analyses were performed by C Loss-On-Ignition, X-ray diffraction and water content by the Richards plates method. Significant differences for SOC, gypsum, and CaCO3 were found between layers; similarly, soil reflectance for 30 cm depth layers was higher. The resulting PLSR models (60 samples for calibration and 30 independent samples for validation) yielded good predictions for SOC (R2 = 0.74), moderate prediction ability for gypsum and were not accurate for the rest of rest of soil components. Importantly, SOC content was related to water available capacity. Soils with high reflectance features held c.a. 40% less water than soils with less reflectance. Therefore, higher reflectance can be related to degradation in gypsiferous soil. The starting point of soil degradation and further evolution could be established and mapped through remote sensing techniques for policy decision making.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Tadele Amare ◽  
Christian Hergarten ◽  
Hans Hurni ◽  
Bettina Wolfgramm ◽  
Birru Yitaferu ◽  
...  

Soil spectroscopy was applied for predicting soil organic carbon (SOC) in the highlands of Ethiopia. Soil samples were acquired from Ethiopia’s National Soil Testing Centre and direct field sampling. The reflectance of samples was measured using a FieldSpec 3 diffuse reflectance spectrometer. Outliers and sample relation were evaluated using principal component analysis (PCA) and models were developed through partial least square regression (PLSR). For nine watersheds sampled, 20% of the samples were set aside to test prediction and 80% were used to develop calibration models. Depending on the number of samples per watershed, cross validation or independent validation were used. The stability of models was evaluated using coefficient of determination (R2), root mean square error (RMSE), and the ratio performance deviation (RPD). The R2 (%), RMSE (%), and RPD, respectively, for validation were Anjeni (88, 0.44, 3.05), Bale (86, 0.52, 2.7), Basketo (89, 0.57, 3.0), Benishangul (91, 0.30, 3.4), Kersa (82, 0.44, 2.4), Kola tembien (75, 0.44, 1.9), Maybar (84. 0.57, 2.5), Megech (85, 0.15, 2.6), and Wondo Genet (86, 0.52, 2.7) indicating that the models were stable. Models performed better for areas with high SOC values than areas with lower SOC values. Overall, soil spectroscopy performance ranged from very good to good.


Author(s):  
Musleh Uddin ◽  
Sandor Turza ◽  
Emiko Okazaki

A near-infrared spectrometer equipped with surface interactance optical fiber probe (400-1100 nm) was used to determine the fat content in intact sardine Sardinops melanostictus which is considered one of the important fish species of world aquaculture as well as human food source. The fat contents were 2.64–25.52 % and fish weight ranges were between 45.23g and 133.76g. Partial least square regression was used to develop predictive equations for fat where two models (with and without multiplicative scatter correction known as MSC) showed relatively good performances with regression coefficients higher than 0.9 and errors below 1% on a fresh weight basis. Results showed that NIR interactance was a suitable non-destructive screening method for fat content in intact small pelagic fish like sardine.


2014 ◽  
Vol 931-932 ◽  
pp. 1549-1554 ◽  
Author(s):  
Adcha Heman ◽  
Ching Lu Hsieh

Moisture content (MC) of rough rice directly affects rice quality and its market value. This study applied spectroscopy both in visible 400-700 nm and NIR 700-1050 nm bands to record spectrum of rough rice single kernel (SK). Tainan No.11 medium rice randomly collected from field. After machine harvested, it was used in the tests and they were conditioned by oven to five MC levels ranging from 10.2 to 35.9%. Two regression methods, multiple linear regressions (MLR) and partial least square regression (PLSR), were applied to develop calibration models. Among 7 tested models were found that PLSR model of first differential with 21 gap points, which are rc=0.98, SEC=1.1% for calibration and rp=0.96, SEP=1.9% for prediction. The results suggested average accuracy for the best model was about 98.4% in 400-1050 nm wavelength.


2018 ◽  
Vol 64 (No. 6) ◽  
pp. 276-282 ◽  
Author(s):  
Šestak Ivana ◽  
Mesić Milan ◽  
Zgorelec Željka ◽  
Perčin Aleksandra ◽  
Stupnišek Ivan

Spectral data contain information on soil organic and mineral composition, which can be useful for soil quality monitoring. The objective of research was to evaluate hyperspectral visible and near infrared reflectance (VNIR) spectroscopy for field-scale prediction of soil properties and assessment of factors affecting soil spectra. Two hundred soil samples taken from the experiment field (soil depth: 30 cm; sampling grid: 15 × 15 m) were scanned using portable spectroradiometer (350–1050 nm) to identify spectral differences of soil treated with ten different rates of mineral nitrogen (N) fertilizer (0–300 kg N/ha). Principal component analysis revealed distinction between higher- and lower-N level treatments conditioned by differences in soil pH, texture and soil organic matter (SOM) composition. Partial least square regression resulted in very strong correlation and low root mean square error (RMSE) between predicted and measured values for the calibration (C) and validation (V) dataset, respectively (SOM, %: R<sub>C</sub><sup>2</sup> = 0.75 and R<sub>V</sub><sup>2</sup> = 0.74; RMSE<sub>C</sub> = 0.334 and RMSE<sub>V</sub> = 0.346; soil pH: R<sub>C</sub><sup>2</sup> = 0.78 and R<sub>V</sub><sup>2</sup> = 0.62; RMSE<sub>C</sub> = 0.448 and RMSE<sub>V</sub> = 0.591). Results indicated that hyperspectral VNIR spectroscopy is an efficient method for measurement of soil functional attributes within precision farming framework.  


Sign in / Sign up

Export Citation Format

Share Document