scholarly journals Preventing MQTT Vulnerabilities Using IoT-Enabled Intrusion Detection System

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 567
Author(s):  
Muhammad Husnain ◽  
Khizar Hayat ◽  
Enrico Cambiaso ◽  
Ubaid U. Fayyaz ◽  
Maurizio Mongelli ◽  
...  

The advancement in the domain of IoT accelerated the development of new communication technologies such as the Message Queuing Telemetry Transport (MQTT) protocol. Although MQTT servers/brokers are considered the main component of all MQTT-based IoT applications, their openness makes them vulnerable to potential cyber-attacks such as DoS, DDoS, or buffer overflow. As a result of this, an efficient intrusion detection system for MQTT-based applications is still a missing piece of the IoT security context. Unfortunately, existing IDSs do not provide IoT communication protocol support such as MQTT or CoAP to validate crafted or malformed packets for protecting the protocol implementation vulnerabilities of IoT devices. In this paper, we have designed and developed an MQTT parsing engine that can be integrated with network-based IDS as an initial layer for extensive checking against IoT protocol vulnerabilities and improper usage through a rigorous validation of packet fields during the packet-parsing stage. In addition, we evaluate the performance of the proposed solution across different reported vulnerabilities. The experimental results demonstrate the effectiveness of the proposed solution for detecting and preventing the exploitation of vulnerabilities on IoT protocols.

IOT is wirelessly connecting things to the internet using sensors, RFID’s and remotely accessing and managing them over our phone or through our voice. IOT uses various communication protocols such as Zigbee, 6LowPan, Bluetooth and has bi directional communication for exchange of information. The database for IOT is cloud which is also vulnerable to security threats. The increasing amount of popularity of IoT and its pervasive usage has made it more recurrent to prominent cyber-attacks such as botnet attack, IoT ransom ware, DOS attack, RFID hack. The challenges faced by IoT are to stop hackers from stealing data, having unattended access to the device and performing malicious activities. There are many techniques which can be used to secure IoT devices such as using a secure encrypted Wi-Fi network, using digital signature for authenticity, updating to latest patches, installing Intrusion Detection System. We’ll also be assessing various IoT devices and threats associated with them in real time environment and the level of harm these threats can cause to the device if they are not properly mitigated or eradicated. In this paper we’ll also be addressing different types of risks associated with different IOT devices and approaches to solve the security and privacy issues


2021 ◽  
Author(s):  
Navroop Kaur ◽  
Meenakshi Bansal ◽  
Sukhwinder Singh S

Abstract In modern times the firewall and antivirus packages are not good enough to protect the organization from numerous cyber attacks. Computer IDS (Intrusion Detection System) is a crucial aspect that contributes to the success of an organization. IDS is a software application responsible for scanning organization networks for suspicious activities and policy rupturing. IDS ensures the secure and reliable functioning of the network within an organization. IDS underwent huge transformations since its origin to cope up with the advancing computer crimes. The primary motive of IDS has been to augment the competence of detecting the attacks without endangering the performance of the network. The research paper elaborates on different types and different functions performed by the IDS. The NSL KDD dataset has been considered for training and testing. The seven prominent classifiers LR (Logistic Regression), NB (Naïve Bayes), DT (Decision Tree), AB (AdaBoost), RF (Random Forest), kNN (k Nearest Neighbor), and SVM (Support Vector Machine) have been studied along with their pros and cons and the feature selection have been imposed to enhance the reading of performance evaluation parameters (Accuracy, Precision, Recall, and F1Score). The paper elaborates a detailed flowchart and algorithm depicting the procedure to perform feature selection using XGB (Extreme Gradient Booster) for four categories of attacks: DoS (Denial of Service), Probe, R2L (Remote to Local Attack), and U2R (User to Root Attack). The selected features have been ranked as per their occurrence. The implementation have been conducted at five different ratios of 60-40%, 70-30%, 90-10%, 50-50%, and 80-20%. Different classifiers scored best for different performance evaluation parameters at different ratios. NB scored with the best Accuracy and Recall values. DT and RF consistently performed with high accuracy. NB, SVM, and kNN achieved good F1Score.


Author(s):  
Rohit Rastogi ◽  
Puru Jain ◽  
Rishabh Jain

In current conditions, robotization has changed into the fundamental piece of our lives. Everybody is completely subject to mechanization whether it is an extraordinary bundling or home robotization. So as to bring home automation into thought, everybody now needs a heterogeneous state security, and in our task on residential robotization, such high security highlights are completely on the best possible consumption for this reason. In light of the structure of the interruption zone, there are some fundamental interests in it. Piezoelectric sensors are compelling for sharpening appropriated wellbeing checking and structures. An intrusion detection system (IDS) is a structure that screen for suspicious movement and issues alarms when such advancement is found. While impossible to miss worthiness and presentation is, some obstruction divulgence structures are fit to take practice when poisonous improvement or peculiar action is perceived.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1977 ◽  
Author(s):  
Geethapriya Thamilarasu ◽  
Shiven Chawla

Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly connected and integrated. When attacks on IoT networks go undetected for longer periods, it affects availability of critical systems for end users, increases the number of data breaches and identity theft, drives up the costs and impacts the revenue. It is imperative to detect attacks on IoT systems in near real time to provide effective security and defense. In this paper, we develop an intelligent intrusion-detection system tailored to the IoT environment. Specifically, we use a deep-learning algorithm to detect malicious traffic in IoT networks. The detection solution provides security as a service and facilitates interoperability between various network communication protocols used in IoT. We evaluate our proposed detection framework using both real-network traces for providing a proof of concept, and using simulation for providing evidence of its scalability. Our experimental results confirm that the proposed intrusion-detection system can detect real-world intrusions effectively.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1210 ◽  
Author(s):  
Khraisat ◽  
Gondal ◽  
Vamplew ◽  
Kamruzzaman ◽  
Alazab

The Internet of Things (IoT) has been rapidly evolving towards making a greater impact on everyday life to large industrial systems. Unfortunately, this has attracted the attention of cybercriminals who made IoT a target of malicious activities, opening the door to a possible attack to the end nodes. Due to the large number and diverse types of IoT devices, it is a challenging task to protect the IoT infrastructure using a traditional intrusion detection system. To protect IoT devices, a novel ensemble Hybrid Intrusion Detection System (HIDS) is proposed by combining a C5 classifier and One Class Support Vector Machine classifier. HIDS combines the advantages of Signature Intrusion Detection System (SIDS) and Anomaly-based Intrusion Detection System (AIDS). The aim of this framework is to detect both the well-known intrusions and zero-day attacks with high detection accuracy and low false-alarm rates. The proposed HIDS is evaluated using the Bot-IoT dataset, which includes legitimate IoT network traffic and several types of attacks. Experiments show that the proposed hybrid IDS provide higher detection rate and lower false positive rate compared to the SIDS and AIDS techniques.


2021 ◽  
Author(s):  
Priyanka Gupta ◽  
Lokesh Yadav ◽  
Deepak Singh Tomar

The Internet of Things (IoT) connects billions of interconnected devices that can exchange information with each other with minimal user intervention. The goal of IoT to become accessible to anyone, anytime, and anywhere. IoT has engaged in multiple fields, including education, healthcare, businesses, and smart home. Security and privacy issues have been significant obstacles to the widespread adoption of IoT. IoT devices cannot be entirely secure from threats; detecting attacks in real-time is essential for securing devices. In the real-time communication domain and especially in IoT, security and protection are the major issues. The resource-constrained nature of IoT devices makes traditional security techniques difficult. In this paper, the research work carried out in IoT Intrusion Detection System is presented. The Machine learning methods are explored to provide an effective security solution for IoT Intrusion Detection systems. Then discussed the advantages and disadvantages of the selected methodology. Further, the datasets used in IoT security are also discussed. Finally, the examination of the open issues and directions for future trends are also provided.


2020 ◽  
Author(s):  
Luís Felipe Prado D'Andrada ◽  
Paulo Freitas de Araujo-Filho ◽  
Divanilson Rodrigo Campelo

The Controller Area Network (CAN) is the most pervasive in-vehiclenetwork technology in cars. However, since CAN was designed with no securityconcerns, solutions to mitigate cyber attacks on CAN networks have been pro-posed. Prior works have shown that detecting anomalies in the CAN networktraffic is a promising solution for increasing vehicle security. One of the mainchallenges in preventing a malicious CAN frame transmission is to be able todetect the anomaly before the end of the frame. This paper presents a real-timeanomaly-based Intrusion Detection System (IDS) capable of meeting this dead-line by using the Isolation Forest detection algorithm implemented in a hardwaredescription language. A true positive rate higher than 99% is achieved in testscenarios. The system requires less than 1μs to evaluate a frame’s payload, thusbeing able to detect the anomaly before the end of the frame.


The ubiquitous computing environment has increased interest in IoT technology. As IoT has open characteristics in the fields of industry, increased accessibility has raised the possibility of threats. As the IoT network was small on scale, there was risk of security. IoT development brought the network environment by combining networks, therefore risk of security attack compared to small network. The response time while operating IoT devices to detect intrusion through hacking, the artificial neural network responses using mobile devices. This process help to deal with hacking. By detecting virus in real time, this process help to prevent intrusion. As IoT security risks, we suggested an intrusion detection system using artificial neural network model in this study. The system which is developed in this can be adjusted to fit situations of IoT by facilitating modification of critical values. The research which detects anomaly through the response to be used for information security system which utilize IoT .


Sign in / Sign up

Export Citation Format

Share Document