scholarly journals Grafting of Acrylic Membrane Prepared from Fibers Waste for Dyes Removal: Methylene Blue and Congo Red

Separations ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 42
Author(s):  
Ahmed Labena ◽  
Ahmed E. Abdelhamid ◽  
Shimaa Husien ◽  
Tarek Youssef ◽  
Ehab Azab ◽  
...  

Dyes are a type of pollutant that have been discharged into water streams by various industries and had harmful effects on the environment and human health. Therefore, present work was directed to recycle acrylic fibers waste to be used as an adsorbent to exclude dyes such as methylene blue (MB) and Congo red (CR) from dyes-polluted wastewater. Acrylic fibers waste was converted into membrane followed by chemical grafting with p-phenylenediamine monomer to form functional modified membranes. Afterwards, some characterization analyses; Fourier transform-infrared, scanning electron microscope, swelling behavior, and porosity properties were performed for the acrylic fiber grafted membrane (AFGM). For obtaining the best conditions that permit the highest adsorption capacity of the AFGM, some preliminary experiments followed by general full factorial design experiments were displayed. Langmuir, Freundlich isotherms and kinetic studies evaluations were applied. Results revealed that, the adsorption capacities of the AFGM were 61% for Methylene blue and 86% for Congo red that stated the high affinity of the AFGM to the anionic dyes. The reusability of the AFGM membranes in different cycles for 3Rs processes “Removal, Recovery, and Re-use” indicated the efficiency of the AFGM to be used in wastewater treatment.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 384
Author(s):  
Ahmed Labena ◽  
Ahmed E. Abdelhamid ◽  
Abeer S. Amin ◽  
Shimaa Husien ◽  
Liqaa Hamid ◽  
...  

Biosorption is a bioremediation approach for the removal of harmful dyes from industrial effluents using biological materials. This study investigated Methylene blue (M. blue) and Congo red (C. red) biosorption from model aqueous solutions by two marine macro-algae, Ulva fasciata and Sargassum dentifolium, incorporated within acrylic fiber waste to form composite membranes, Acrylic fiber-U. fasciata (AF-U) and Acrylic fiber-S. dentifolium (AF-S), respectively. The adsorption process was designed to more easily achieve the 3R process, i.e., removal, recovery, and reuse. The process of optimization was implemented through one factor at a time (OFAT) experiments, followed by a factorial design experiment to achieve the highest dye removal efficiency. Furthermore, isotherm and kinetics studies were undertaken to determine the reaction nature. FT-IR and SEM analyses were performed to investigate the properties of the membrane. The AF-U membrane showed a significant dye removal efficiency, of 88.9% for 100 ppm M. blue conc. and 79.6% for 50 ppm C. red conc. after 240 min sorption time. AF-S recorded a sorption capacity of 82.1% for 100 ppm M. blue conc. after 30 min sorption time and 85% for 100 ppm C. red conc. after 240 min contact time. The membranes were successfully applied in the 3Rs process, in which it was found that the membranes could be used for five cycles of the removal process with stable efficiency.



2021 ◽  
Vol 11 (5) ◽  
pp. 12662-12679

In this study, Chemical activation was used to prepare a low-cost activated carbon (AC) from agricultural waste material: Cucumis melo. It was used as a green biosorbent for the removal of cationic and anionic dyes from aqueous solutions (Methylene blue (MB) and Acid orange 7 (AO7)).A full factorial 24 experimental design was used to optimize the preparation conditions. The factors and levels included are activation temperature (300 and 500ºC), activation time (1 and 3 h), H3PO4 concentration (1.5 and 2.5 mol/L), and contact time (60 and 90 min). The surface area of the activated carbons and high removal efficiency of MB and AO7 was chosen as a measure of the optimization. The activated carbon prepared at 500 °C, for 3 hours with an H3PO4 concentration of 2.5 mol/L and a contact time of 90 min, have the largest specific surface area (475 m2/g) and the percentage of discoloration of methylene blue (99.4%). Furthermore, the greater value of AO7 removal (94.20%) was obtained at 3h - activation time, 500°C - activation temperature, 1.5 mol/L - H3PO4 concentration with a 90 min contact time.



2019 ◽  
Vol 6 (10) ◽  
pp. 105521 ◽  
Author(s):  
Qi Zhang ◽  
Song Cheng ◽  
Hongying Xia ◽  
Libo Zhang ◽  
Junwen Zhou ◽  
...  


2021 ◽  
Vol 2063 (1) ◽  
pp. 012011
Author(s):  
Huda S Al-Niaeem ◽  
Ali A Abdulwahid ◽  
Whidad S Hanoosh

Abstract Hydrogels of acrylamide (AM), acrylamide\ 2-acrylamido-2-methyl-1-propane sulphonic acid (AMS), and acrylamide\ 2-acrylamido-2-methyl-1-propane sulphonic acid\graphene oxide (AMSGO) were prepared as adsorbents to remove carcinogenic dyes Congo red (CR) and Bismarck brown Y (BBY) from aqueous solutions. Hydrogels were characterized using FSEM and XRD analyses. For both dyes, the synthesized hydrogels demonstrated high adsorption capability at near-neutral pH. Experimental adsorption data were analyzed using the Langmuir and Freundlich isotherm models. It was found that the Langmuir model was more suitable for the experimental data. Kinetic studies found that the pseudo-second-order model demonstrated the best fitting to the experimental data. In addition, thermodynamic studies suggest that the adsorption process was spontaneous and endothermic. The prepared hydrogels were regenerated and reused in four consecutive cycles and it could be applied to remove anionic dyes from aqueous solutions as an effective adsorbent.



2021 ◽  
Author(s):  
Lijuan Zhang ◽  
Dongqing Zhao ◽  
Yao Lu ◽  
Jinghan Chen ◽  
Haotian Li ◽  
...  

A highly efficient strategy was developed to fabricate graphene oxide modified cellulose nanocrystal/PNIPAAm IPN (GO-CNC/PNIPAAm IPN) hydrogel, which was capable of effectively adsorbing cationic and anionic dyes. The adsorption of...



2019 ◽  
Vol 21 (4) ◽  
pp. 89-97 ◽  
Author(s):  
Yuqi Wang ◽  
Yanhui Li ◽  
Heng Zheng

Abstract New kind of adsorbent was produced from Trichosanthes kirilowii Maxim shell. The KOH activation technology for preparation of Trichosanthes kirilowii Maxim shell activated carbon (TKMCK) was optimized. Using methylene blue as the sample adsorbate, the adsorption behavior was systematically investigated in terms of the activation agent and temperature, the adsorption temperature and time, the initial adsorbate pH and concentration, as well as the dosage of adsorbent. Surface physical morphology of the TKMCK prepared was observed by scanning electron microscopy (SEM), while the functional groups were determined with Fourier transform infrared (FTIR) spectra. Kinetic studies indicated that the adsorption process was more consistent with the pseudo-second-order kinetic. Both Langmuir and Freundlich isotherms were employed to fit the adsorption data at equilibrium, with the former giving a maximum adsorption capacity of 793.65 mg/g at 323 K. BET surface area of as-prepared TKMCK was 657.78 m2/g.



2020 ◽  
Vol 62 (4) ◽  
pp. 62-71
Author(s):  
Evgenia A. Tarasenko ◽  
◽  
Irina G. Ryltsova ◽  
Maksim N. Yapryntsev ◽  
Yevgenia Yu. Nakisko ◽  
...  

The work is devoted to the study of the sorption properties of hierarchical composite materials with a core-shell structure. The composites contained a core of SiO2 or Fe3O4@SiO2 obtained by sol-gel synthesis, on the surface of which a layered double hydroxide (MgAlFe-LDH) was deposited. The phase composition of the obtained materials was determined, and the textural characteristics and particle morphology were studied. It was found that hierarchical materials had larger surface and demonstrated high sorption capacity towards both cationic and anionic dyes in aqueous solution in comparison with individual systems (SiO2 and MgAlFe-LDH). It was shown that the sorption equilibrium in the system “dye solution – sorbent” for dye methylene blue was achieved faster in comparison with Congo red. The obtained kinetic data were analyzed using chemical kinetic models. The sorption of both Congo red and methylene blue on composite materials was found to be described by a pseudo-second order kinetic equation. Isotherms of sorption of Congo red and methylene blue on synthesized materials were plotted. The sorption capacity of Fe3O4@SiO2@LDH and SiO2@LDH towards Congo red were 0.19 mmol/g and 0.27 mmol/g, respectively. In the case of sorption of methylene blue, the sorption isotherms did not reach a plateau in the studied concentration range. However, it can be noted that at an initial methylene blue concentration of 0.051 mmol/L the sorption capacity of Fe3O4@SiO2@LDH and SiO2@LDH were 0.040 mmol/g and 0.033 mmol/g, respectively. The obtained data indicate that hierarchical composite materials containing LDH in their composition are effective bifunctional sorbents and can uptake both anionic and cationic forms of pollutants from a solution. An advantage of the Fe3O4 core system is its ability to be easily separate from a solution under the influence of an external magnetic field. It is important that the Fe3O4@SiO2@LDH sample exhibits a typical superparamagnetic behavior with zero coercitivity and residual magnetic induction.



2019 ◽  
Vol 14 ◽  
pp. 155892501982819 ◽  
Author(s):  
Xinxia Yue ◽  
Jiwei Huang ◽  
Fang Jiang ◽  
Hong Lin ◽  
Yuyue Chen

Synthetic dyes are widely used in textile, paper, plastic, and other industries, which are toxic and harmful to environment and human. Adsorption is an efficient method to control wastewater. Cellulose is an abundant, renewable, and eco-friendly polymer produced by plants and trees. An adsorbent for removal of dyes was successfully prepared by grafting amino-terminated hyperbranched polymer (NH2-HBP) and beta-cyclodextrin (β-CD) onto cotton fibers in this study. The adsorbent were characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy analysis. The influences of adsorption parameters in a batch mode including initial solution pH, contact time, and dye initial concentration were evaluated in the experiments. The experiment results showed that the adsorption equilibrium was reached within 6 h for Congo red and within 4 h for methylene blue. Both the adsorption isotherms and kinetic studies showed that the behaviors of Congo red and methylene blue removal by the adsorbent based on cotton fibers conformed with Freundlich model and fitted pseudo-second-order model, respectively.



TAPPI Journal ◽  
2016 ◽  
Vol 15 (10) ◽  
pp. 631-639
Author(s):  
MOHAMMAD HADI ARYAIE MONFARED ◽  
HOSSEIN RESALATI ◽  
ALI GHASEMIAN ◽  
MARTIN A. HUBBE

This study investigated the addition of acrylic fiber to old corrugated container (OCC) pulp as a possible means of overcoming adverse effects of water-based pressure sensitive adhesives during manufacture of paper or paperboard. Such adhesives can constitute a main source of stickies, which hurt the efficiency of the papermaking process and make tacky spots in the product. The highest amount of acrylic fiber added to recycled pulps generally resulted in a 77% reduction in accepted pulp microstickies. The addition of acrylic fibers also increased pulp freeness, tear index, burst strength, and breaking length, though there was a reduction in screen yield. Hence, in addition to controlling the adverse effects of stickies, the addition of acrylic fibers resulted in the improvement of the mechanical properties of paper compared with a control sample.



Sign in / Sign up

Export Citation Format

Share Document