scholarly journals Synthesis and characterization of cellulose-based adsorbent for removal of anionic and cationic dyes

2019 ◽  
Vol 14 ◽  
pp. 155892501982819 ◽  
Author(s):  
Xinxia Yue ◽  
Jiwei Huang ◽  
Fang Jiang ◽  
Hong Lin ◽  
Yuyue Chen

Synthetic dyes are widely used in textile, paper, plastic, and other industries, which are toxic and harmful to environment and human. Adsorption is an efficient method to control wastewater. Cellulose is an abundant, renewable, and eco-friendly polymer produced by plants and trees. An adsorbent for removal of dyes was successfully prepared by grafting amino-terminated hyperbranched polymer (NH2-HBP) and beta-cyclodextrin (β-CD) onto cotton fibers in this study. The adsorbent were characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy analysis. The influences of adsorption parameters in a batch mode including initial solution pH, contact time, and dye initial concentration were evaluated in the experiments. The experiment results showed that the adsorption equilibrium was reached within 6 h for Congo red and within 4 h for methylene blue. Both the adsorption isotherms and kinetic studies showed that the behaviors of Congo red and methylene blue removal by the adsorbent based on cotton fibers conformed with Freundlich model and fitted pseudo-second-order model, respectively.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Julius Ndi Nsami ◽  
Joseph Ketcha Mbadcam

The adsorption of methylene blue from aqueous solution onto activated carbon prepared from cola nut shell has been investigated under batch mode. The influence of major parameters governing the efficiency of the process such as, solution pH, sorbent dose, initial concentration, and contact time on the removal process was investigated. The time-dependent experimental studies showed that the adsorption quantity of methylene blue increases with initial concentration and decreasing adsorbent dosage. The equilibrium time of 180 min was observed and maximum adsorption was favoured at pH 3.5. The dye removal using 0.1 g of adsorbent was more than 90%. This dosage (0.1 g) was considered as the optimum dosage to remove methylene blue from aqueous solutions. The equilibrium adsorption data were analyzed by the Freundlich, Langmuir adsorption isotherm models. The kinetics of methylene blue solution was discussed by pseudo-first-order, pseudo-second-order, and Elovich models. The adsorption process follows the Elovich rate kinetic model, having a correlation coefficient in the range between 0.9811 and 1.


2021 ◽  
Vol 12 (6) ◽  
pp. 7845-7862

Water contamination caused by the presence of synthetic dye is one of the world's major environmental concerns. This work aims to explore the potential application of non-carbonized phosphoric acid-treated Balanites aegyptiaca "heglig" seed husks powder (BASHP) as a bio-sorbent for methylene blue (MB) removal from water bodies. BASHP was characterized using Fourier transform infrared spectroscopy (FTIR). The characteristics of BASHP, such as the iodine number, point of zero charges, solubility, and specific surface area (SMB) were also estimated. The biosorption of MB onto the BASHP surface was studied in batch mode under various conditions (contact time, shaking speed, solution temperature, initial solution pH, ionic strength, initial dye concentration, and biosorbent dosage). The adsorption kinetics and isotherm were better described by pseudo-second-order and Langmuir models, respectively. More than 97% of MB was removed, and the maximum biosorbed amount of MB (qmax) was 72.99 mg/g. Thermodynamics findings revealed that the proposed biosorption is an endothermic and spontaneous process. These findings showed that BASHP is a potentially eco-friendly, easily available, and low-cost material for removing hazardous dyes (e.g., methylene blue) from an aquatic environment, as well as a promising method for reducing agricultural solid waste (e.g., seed husks).


2013 ◽  
Vol 14 (1) ◽  
pp. 24-31

Water hyacinth Eichhornia crassipes was found to have biosorption capacity for cationic dyes, malachite green and methylene blue from aqueous solutions. To evaluate the biosorption capacity and characteristics, the effect of solution pH, initial dye concentration, temperature, dose of biosorbent loading, contact time and shaking rate were investigated in a batch mode. Biosorption was increased with the increasing temperature for both studied dyes. The Langmuir and Freundlich adsorption models were used for mathematical description of the sorption equilibrium. Equilibrium data was fitted well to the Langmuir model in the studied concentrations (1-200 mg L-1) at 293 and 313 K. Based on the Langmuir isotherm plots the maximum biosorption capacity values were calculated to be 44.64 mg g-1 for malachite green and 42.55 mg g-1 for methylene blue at 313 K. Various thermodynamic parameters such as ΔGo, ΔHo, and ΔSo were evaluated with results indicating that this system was an endothermic spontaneous reaction and kinetically suited to pseudo-second-order model.


2019 ◽  
Vol 18 (05) ◽  
pp. 1850030 ◽  
Author(s):  
Qiuju Du ◽  
Yanhui Li ◽  
Jiabin Li ◽  
Zhao Zhang ◽  
Bin Qiao ◽  
...  

A facile and easily separated adsorbent, graphene oxide (GO) pellets wrapped by chitosan (GOP) were prepared. Batch adsorption studies were carried out to study the adsorption properties of congo red onto GOP by varying the experimental parameters such as the contact time, the initial concentration of congo red, the solution pH, the adsorbent dose, and the temperature. The kinetic studies showed that the adsorption data fitted a pseudo-second-order model well. The isotherm analysis showed that the adsorption data fitted the Freundlich model well. The adsorption mechanism was mainly attributed to electrostatic interactions, [Formula: see text]–[Formula: see text] stacking interaction, hydrogen bond, and van der Waals force. Thermodynamic studies indicated that the adsorption process was endothermic and spontaneous.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 149
Author(s):  
Chunhui Zheng ◽  
Chunlin He ◽  
Yingjie Yang ◽  
Toyohisa Fujita ◽  
Guifang Wang ◽  
...  

The continuous expansion of the market demand and scale of commercial amidoxime chelating resins has caused large amounts of resin to be discarded around the world. In this study, the waste amidoxime chelating resin was reutilized as an adsorbent for the removal and recovery of Pb(II), Cu(II), Cd(II) and Zn(II) ions from aqueous solutions. The physical morphology and chemical composition of the waste amidoxime chelating resin (WAC-resin) from the factory was characterized by the elemental analyzer, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The influence of the initial metal ions concentration, contact time, temperature and the solution pH on the adsorption performance of the metal ions was explored by batch experiments. It was shown that the optimal pH was 4. Kinetic studies revealed that adsorption process corresponded with the pseudo-second-order kinetic model and the adsorption isotherm was consistent with the Langmuir model. At room temperature, the adsorption capacities of WAC-resin for Pb2+, Cu2+, Zn2+ and Cd2+ reached 114.6, 93.4, 24.4 and 20.7 mg/g, respectively.


2013 ◽  
Vol 65 (1) ◽  
Author(s):  
Norzita Ngadi ◽  
Chin Chiek Ee ◽  
Nor Aida Yusoff

Dyes contain carcinogenic materials which can cause serious hazards to aquatic life and the users of water. Textile industry is the main source of dye wastewater which results in environmental pollution. Many studies have been conducted to investigate the use of low cost adsorbent as an alternative technique for the adsorption of dye. The objective of this study is to determine the potential of eggshell powder as an adsorbent for methylene blue removal and find out the best operating conditions for the color adsorption at laboratory scale. The adsorption of cationic methylene blue from aqueous solution onto the eggshell powder was carried out by varying the operating parameters which were contact time, pH, dosage of eggshell powder and temperature in order to study their effect in adsorption capacity of eggshell powder. The results obtained showed that the best operating condition for removal of methylene blue was at pH 10 (78.98 %) and temperature 50°C (47.37 %) by using 2 g of eggshell powder (57.03 %) with 30 minutes equilibrium time (41.36 %). The kinetic studies indicated that pseudo-second-order model best described the adsorption process.


2018 ◽  
Vol 83 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Zdravka Velkova ◽  
Gergana Kirova ◽  
Margarita Stoytcheva ◽  
Velizar Gochev

Pretreated waste Streptomyces fradiae biomass was utilized as an eco-friendly sorbent for Congo Red (CR) and Methylene Blue (MB) removal from aqueous solutions. The biosorbent was characterized by Fourier transform infrared spectroscopy. Batch experiments were conducted to study the effect of pH, biosorbent dosage, initial concentration of adsorbates, contact time and temperature on the biosorption of the two dyes. The equilibrium adsorption data were analysed using Freundlich and Langmuir models. Both models fitted well the experimental data. The maximum biosorption capacity of the pretreated Streptomyces fradiae biomass was 46.64 mg g-1 for CR and 59.63 mg g-1 for MB, at a pH 6.0, with the contact time of 120 min, the biosorbent dosage of 2 g dm-3 and the temperature of 298 K. Lagergren and Ho kinetic models were used to analyse the kinetic data obtained from different batch experiments. The biosorption of both dyes followed better the pseudo-second order kinetic model. The calculated values for ?G, ?S, and ?H indicated that the biosorption of CR and MB onto the waste pretreated biomass was feasible, spontaneous, and exothermic in the selected temperature range and conditions.


2021 ◽  
Vol 406 ◽  
pp. 348-363
Author(s):  
Larbi Haddad ◽  
Abdelkader Hima ◽  
Belkhir Dadamoussa ◽  
Asma Messai Aoun

In this study, a local mineral clay was used as an adsorbent for the elimination of a cationic dye: methylene blue (MB), in an aqueous solution by adsorption technique. Early on, we performed mineralogical and textural analyses of a clay sample using various techniques, namely X-ray diffraction, Brunauer-Emmett-Teller analysis and Fourier-transform infrared spectroscopy. The experimental results showed that this adsorbent is a mesoporous and non-swelling clay with illite and kaolinite as the major components with a specific area of about 110m2/g. The study of MB adsorption on the clay was carried out by optimizing the conditions of adsorption, notably the initial concentration of pollutant C0, the mass of clay m, the contact time t, the potential of hydrogen of the solution pH and the temperature T. Experimental results have shown that the equilibrium data are well adjusted by a Langmuir isotherm equation. Thermodynamic parameters such as the changes in Gibbs free energy, enthalpy, and entropy were determined from batch experiments. Results revealed that the adsorption of MB onto illitic clay was endothermic and spontaneous process. Kinetic modeling was also carried out. Experimental data adjusted the kinetic model of pseudo-second order with two stages of intraparticle diffusion.


2020 ◽  
Vol 15 (2) ◽  
pp. 460-471
Author(s):  
T. Unugul ◽  
F. U. Nigiz

Abstract In this study; acid treated carbonized mandarin peel (CMP) adsorbent was prepared and the adsorption behaviour of the adsorbent for copper removal was investigated. In the adsorption studies the effects of initial metal concentration, solution pH, adsorbent dosage and contact time on the removal were investigated. As a result; the highest removal of 100% was achieved when the copper concentration in water was 5 mg/L and the adsorbent dosage was 3.75 g/L at a solution pH of 7. Isotherm studies were also done and the appropriate isotherm was obtained as the Freundlich isotherm. According to the kinetic studies, the copper adsorption onto CMP adsorbent was adopted to the pseudo-second-order adsorption kinetic. After HCl regeneration, the adsorbent maintained 94% of its activity.


2015 ◽  
Vol 1125 ◽  
pp. 281-285
Author(s):  
Siti Aishah Muhmed ◽  
Mohd Ghazali Mohd Nawawi

Crosslinked Sago Starch (CSS) was prepared by crosslinking native starch with Sodium Trimetaphosphate. As a biodegradable adsorbent, CSS was used to remove methylene blue (MB) from the aqueous solution based on its characterization, including the granule morphology, crystalline nature and molecular structure. The adsorption capacity of CSS was evaluated as a function of pH, adsorbent dosage, initial concentration and time. It was favorable for adsorption under condition of neutral and at high initial concentration. The adsorption capacity trend was decreased with increasing the adsorbent dosage. The equilibrium isotherms were conducted using Langmuir, Freundlich and Tempkin model. It has been demonstrated that the better agreement was Langmuir isotherm with correlation coefficient of 0.99, equilibrium adsorption capacity of 3.75 mg g-1, chi-square test, χ2 of 0.03% and corresponding contact time of 4 hours. The pseudo-first-order, pseudo-second-order and intra-particle diffusion were used to fit adsorption data in the kinetic studies. And results showed that the adsorption kinetics was more accurately described by the pseudo-second-order model with correlation coefficient, R2 of 0.99 and standard deviation, SSE of 0.12%. The obtained results suggest that CSS could be promising candidates as an adsorbent for dye removal.


Sign in / Sign up

Export Citation Format

Share Document