scholarly journals Cost-Effective Simultaneous Separation and Quantification of Phenolics in Green and Processed Tea Using HPLC–UV–ESI Single-Quadrupole MS Detector and Python Script

Separations ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 45
Author(s):  
Chan-Su Rha ◽  
Yun-Mi Choi ◽  
Jong-Chan Kim ◽  
Dae-Ok Kim

Phenolic composition of green tea (Camellia sinensis) varies according to manufacturing processes that result in deglycosylation of glycosylated phenolics and condensation, epimerization, and degalloylation of flavan-3-ols (catechins). Ambiguous phenolic assignments based on UV absorbance alone can occur when the chromatographic peaks overlapped slightly. We established an improved method using an HPLC–UV coupled with a single-quadrupole MS detector (MS1) that can reject false UV peaks after checking the preceding MS1 peaks. Adjusted UV data coded by the Python algorithm were deployed to compare tea phenolics. Performance validation of the MS1 and UV analysis methods for 19 phenolics revealed a sensitivity of 0.17 and 0.47 pmol/injection, limit of detection of 15 and 33 μg/L, limit of quantification of 50 and 110 μg/L, intra-day precision of 5% and 1% relative standard deviation, and trueness of 83–135% and 97–100%, respectively. Our results suggest that the HPLC–UV–MS1 method, which is a low operational cost method, potentially provides the precise phenolic composition of teas.


2019 ◽  
Vol 10 (2) ◽  
pp. 927-934
Author(s):  
Kiran Kumar A ◽  
Balakrishnan M ◽  
Chandrasekhar K B ◽  
Kiran Jyothi R

The three most drug combinations for cough, cold are widely used worldwide now a day. The purpose of the study was to build up an innovative RP-UPLC technique for simultaneous estimation of Levosalbutamol Sulphate (LEV), Guaiphenesin (GUA) and Ambroxol Hydrochloride (AMB) in liquid dosage forms. Chromatography was carried out on UHPLC (WATERS)_SYMMETRY® C18 4.6mm x 1000mm, 3.5µm, (Agilent - Zorbax Eclipse Plus C18 – Rapid Resolution) with an isocratic mobile phase with pH 3.0 composed of buffer, methanol and Acetonitrile (60:20:20) with a flow rate of 0.8mL/min. The detection was carried out with column temperature at 25°C using a UV detector at 276nm. Validation parameters like linearity, specificity, precision, accuracy, limit of detection (LOD), limit of quantification (LOQ), system suitability, Solutions stability and robustness were considered as affirmed in the ICH guidelines. Retention times for LEV, GUA & AMB were 1.07 min, 1.99 min & 3.55 min respectively. The assay of syrups with the relative standard deviation found to be less than 2%. The parameters values were found, and the method was found to be satisfactory. This validated UHPLC method is cost-effective, receptive and precise than other chromatographic methods.



2020 ◽  
Vol 11 (03) ◽  
pp. 310-316
Author(s):  
Kallol S Jana ◽  
Beduin Mahanti

A simple high performance liquid chromatography (HPLC) method was developed for the assay of bemotrizinol (Tinosorb-S) from the complex pharmaceutical cosmetics matrix. Unlike the existing methods, the proposed mobile phase used in this method is very simple and excluding buffer. The use of buffer reducing column longevity and also a time-consuming process which increases the cost of analysis. To overcome all the referred problems, the present article was developed and validated as per International Council for Harmonization (ICH) guidelines. The reverse-phase chromatography was performed on Shimadzu model no. SPD-M10A VP with LC solution software, μBondapack (3.9 × 300 mm, 10-micron particle size) column with methanol (100%) as mobile phase at a flow rate 2.5 mL per minutes and UV detection at 254 nm. The retention time of bemotrizinol was found in 17.599 minutes, and the linear regression analysis data for the calibration plots showed a good linear relationship in the concentration range 70 to 130 μg/mL. The value of the correlation coefficient, slope, and intercept were 0.996, 7,715, and 15,320, respectively. The limit of quantification (LoQ) and limit of detection (LoD) were found to be 1.32 and 0.44, respectively. The relative standard deviation (RSD) for intra-day sample A 1.0858, sample B 0.8859, and inter-day sample A 0.9921, sample B 0.967 which were found to be lesser than 2%. The developed method was validated with regard to linearity, accuracy, precision, selectivity, and robustness, and the method was found to be simple, cost-effective, precise, accurate, linear, and specific for the successful identification and determination of bemotrizinol in pharmaceutical cosmetic preparation.



2009 ◽  
Vol 6 (4) ◽  
pp. 1233-1239 ◽  
Author(s):  
J. Saminathan ◽  
A. S. Sankar ◽  
K. Anandakumar ◽  
T. Vetrichelvan

A simple and cost effective spectrophotometric method is described for the determination of fluvastatin sodium in pure form and in pharmaceutical formulations. When the drug reacts with sodium hydroxide shows absorption maximum at 304 nm and obeys beer's law in the concentration range 5-25 µg mL-1. The absorbance was found to increase linearly with increasing concentration of FVS, which is corroborated by the calculated correlation coefficient value of 0.9999 (n=5). The apparent molar absorptivity and sandell sensitivity were 1.1905×104and 0.0368844 µg cm-2cm respectively. The slope and intercept of the equation of the regression line are 0.027112 and 0.003539 respectively. The limit of detection and limit of quantification was found to be 0.0811 µg mL-1& 0.2460 µg mL-1. The validity of the described procedure was assessed. Statistical analysis of the result has been carried out revealing high accuracy and good precision. The proposed method was successfully applied to the determination of FVS in pharmaceutical formulations without any interference from common excipients. The relative standard deviations were ≤ 0.937%, with recoveries of 98.60% -101.70%.



2020 ◽  
Vol 16 ◽  
Author(s):  
Nadereh Rahbar ◽  
Fatemeh Ahmadi ◽  
Zahra Ramezani ◽  
Masoumeh Nourani

Background: Sample preparation is one of the most challenging phases in pharmaceutical analysis, especially in biological matrices, affecting the whole analytical methodology. Objective: In this study, a new Ca(II)/Cu(II)/alginate/CuO nanoparticles hydrogel fiber (CCACHF) was synthesized through a simple, green procedure and applied for fiber micro solid phase extraction (FMSPE) of diazepam (DIZ) and oxazepam (OXZ) as model drugs prior to high-performance liquid chromatography-UV detection (HPLC-UV). Methods: Composition and morphology of the prepared fiber were characterized and the effect of main parameters on the fiber fabrication and extraction efficiency have been studied and optimized. Results: In optimal conditions, calibration curves were linear ranging between 0.1–500 µg L−1 with regression coefficients of 0.9938 and 0.9968. Limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) of the technique for DIZ and OXZ were 0.03 to 0.1 µg L−1. Within-day and between-day relative standard deviations (RSDs) for DIZ and OXZ were 6.0–12.5% and 3.3–9.4%, respectively. Conclusion: The fabricated adsorbent has been substantially employed to extraction of selected benzo-diazepines (BZDs) from human serum real specimens and the obtained recoveries were also satisfactory (82.1-109.7%).



2020 ◽  
Vol 18 (1) ◽  
pp. 962-973
Author(s):  
Saira Arif ◽  
Sadia Ata

AbstractA rapid and specific method was developed for simultaneous quantification of hydrocortisone 21 acetate (HCA), dexamethasone (DEX), and fluocinolone acetonide (FCA) in whitening cream formulations using reversed-phase high-performance liquid chromatography. The effect of the composition of the mobile phase, analysis temperature, and detection wavelength was investigated to optimize the separation of studied components. The analytes were finally well separated using ACE Excel 2, C18 AR column having 150 mm length, 3 mm internal diameter, and 2 µm particle size at 35°C using methanol with 1% formic acid and double-distilled deionized water in the ratio of 60:40 (v/v), respectively, as the mobile phase in isocratic mode. Ten microliters of sample were injected with a flow rate of 0.5 mL/min. The specificity, linearity, accuracy, precision, recovery, limit of detection (LOD), limit of quantification (LOQ), and robustness were determined to validate the method as per International Conference on Harmonization guidelines. All the analytes were simultaneously separated within 8 min, and observed retention times of HCA, DEX, and FCA were 4.5, 5.5, and 6.9 min, respectively. The proposed method showed good linearity with the correlation coefficient, R2 = 0.999 over the range of 1–150 µg/mL for all standards. The linear regression equations were y = 12.7x + 118.7 (r = 0.999) for HCA, y = 12.9x + 106.8 (r = 0.999) for DEX, and y = 12.9x + 96.8 (r = 0.999) for FCA. The LOD was 0.25, 0.20, and 0.08 µg/mL for HCA, FCA, and DEX and LOQ was 2.06, 1.83, and 1.55 µg/mL for HCA, FCA, and DEX, respectively. The recovery values of HCA, DEX, and FCA ranged from 100.7–101.3, 102.0–102.6, and 100.2–102.0%, respectively, and the relative standard deviation for precision (intra- and interday) was less than 2, which indicated repeatability and reproducibility. The novelty of the method was described by forced degradation experimentation of all analytes in the combined form under acidic, basic, oxidative, and thermal stress. The proposed method was found to be simple, rapid, and reliable for the simultaneous determination of HCA, DEX, and FCA in cosmetics.



2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Indhu Priya Mabbu ◽  
G. Sumathi ◽  
N. Devanna

Abstract Background The aim of the present method is to develop and validate a specific, sensitive, precise, and accurate liquid chromatography-mass spectrometry (LC-MS) method for the estimation of the phenyl vinyl sulfone in the eletriptan hydrobromide. The effective separation of the phenyl vinyl sulfone was achieved by the Symmetry C18 (50 × 4.6 mm, 3.5 μm) column and a mobile phase composition of 0.1%v/v ammonia buffer to methanol (5:95 v/v), using 0.45 ml/min flow rate and 20 μl of injection volume, with methanol used as diluent. The phenyl vinyl sulfone was monitored on atomic pressure chemical ionization mode mass spectrometer with positive polarity mode. Results The retention time of phenyl vinyl sulfone was found at 2.13 min. The limit of detection (LOD) and limit of quantification (LOQ) were observed at 1.43 ppm and 4.77 ppm concentration respectively; the linear range was found in the concentration ranges from 4.77 to 27.00 ppm with regression coefficient of 0.9990 and accuracy in the range of 97.50–102.10%. The percentage relative standard deviation (% RSD) for six replicates said to be injections were less than 10%. Conclusion The proposed method was validated successfully as per ICH guidelines. Hence, this is employed for the determination of phenyl vinyl sulfone in the eletriptan hydrobromide.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenlong Guo ◽  
YiFei Su ◽  
Kexin Li ◽  
MengYi Tang ◽  
Qiang Li ◽  
...  

AbstractThe development of detecting residual level of abamectin B1 in apples is of great importance to public health. Herein, we synthesized a octopus-like azobenzene fluorescent probe 1,3,5-tris (5′-[(E)-(p-phenoxyazo) diazenyl)] benzene-1,3-dicarboxylic acid) benzene (TPB) for preliminary detection of abamectin B1 in apples. The TPB molecule has been characterized by ultraviolet–visible absorption spectrometry, 1H-nuclear magnetic resonance, fourier-transform infrared (FT-IR), electrospray ionization mass spectroscopy (ESI-MS) and fluorescent spectra. A proper determination condition was optimized, with limit of detection and limit of quantification of 1.3 µg L−1 and 4.4 μg L−1, respectively. The mechanism of this probe to identify abamectin B1 was illustrated in terms of undergoing aromatic nucleophilic substitution, by comparing fluorescence changes, FT-IR and ESI-MS. Furthermore, a facile quantitative detection of the residual abamectin B1 in apples was achieved. Good reproducibility was present based on relative standard deviation of 2.2%. Six carboxyl recognition sites, three azo groups and unique fluorescence signal towards abamectin B1 of this fluorescent probe demonstrated reasonable sensitivity, specificity and selectivity. The results indicate that the octopus-like azobenzene fluorescent probe can be expected to be reliable for evaluating abamectin B1 in agricultural foods.



Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1837
Author(s):  
Harischandra Naik Rathod ◽  
Bheemanna Mallappa ◽  
Pallavi Malenahalli Sidramappa ◽  
Chandra Sekhara Reddy Vennapusa ◽  
Pavankumar Kamin ◽  
...  

A quick, sensitive, and reproducible analytical method for the determination of 77 multiclass pesticides and their metabolites in Capsicum and tomato by gas and liquid chromatography tandem mass spectrometry was standardized and validated. The limit of detection of 0.19 to 10.91 and limit of quantification of 0.63 to 36.34 µg·kg−1 for Capsicum and 0.10 to 9.55 µg·kg−1 (LOD) and 0.35 to 33.43 µg·kg−1 (LOQ) for tomato. The method involves extraction of sample with acetonitrile, purification by dispersive solid phase extraction using primary secondary amine and graphitized carbon black. The recoveries of all pesticides were in the range of 75 to 110% with a relative standard deviation of less than 20%. Similarly, the method precision was evaluated interms of repeatability (RSDr) and reproducibility (RSDwR) by spiking of mixed pesticides standards at 100 µg·kg−1 recorded anRSD of less than 20%. The matrix effect was acceptable and no significant variation was observed in both the matrices except for few pesticides. The estimated measurement uncertainty found acceptable for all the pesticides. This method found suitable for analysis of vegetable samples drawn from market and farm gates.



2003 ◽  
Vol 68 (8-9) ◽  
pp. 691-698 ◽  
Author(s):  
Milena Jelikic-Stankov ◽  
Predrag Djurdjevic ◽  
Dejan Stankov

In this work a new enzymatic method for the determination of uric acid in human serum has been developed. The method is based on the oxidative coupling reaction between the N-methyl-N-(4-aminophenyl)-3-methoxyaniline (NCP) reagent and the hydrogen ? donor reagent N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline (TOOS), in the system involving three enzymes: uricase, peroxidase and ascorbate oxidase. Using this method uric acid could be determined in concentrations up to 1.428 mmol/L, with a relative standard deviation of up to 1.8 %. The effect of the medium pH and the NCP concentration on the linearity of the chromogen absorbance versus the uric acid concentration curve was investigated. The influence of the uricase activity on the maximum rate of uric acid oxidation was also examined. The use of the NCP reagent demonstrated a more precise and more sensitive determination of the uric acid compared to the determination with 4-aminoantipyrine (4-AA) as the coupling regent. The sensitivity of the method determined from the calibration curve was 0.71 absorbance units per mmol/L of uric acid; the limit of detection was LOD = 0.0035 mmol/L and the limit of quantification was LOQ = 0.015 mmol/L of uric acid.



Author(s):  
Ch. Jaswanth Kumar ◽  
Prachet Pinnamaneni ◽  
Siva Prasad Morla ◽  
K. N. Rajini Kanth ◽  
Rama Rao Nadendla

Aims: The main aim of the present study was to develop and validate a simple and cost- effective method for the estimation of allopurinol and its related substances by using RP-HPLC. Study Design:  Estimation of Allopurinol and its related substance in bulk and tablet dosage forms by RP-HPLC. Place and Duration of Study: Chalapathi Drug Testing Laboratory, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Lam, Guntur-522034 between October 2020 to January 2021. Methodology: Method development was carried out by using Schimadzu, Prominence-i series LC 3D-Plus autosampler embedded with lab solutions software, equipped with PDA detector using YMC column (150 mm X 4.6 mm, 3 μm) and 0.1M Ammonium acetate buffer as a mobile phase in the ratio of 100% at a flow rate of 1.0 ml/min at a wavelength of 255nm. The developed method was validated according to ICH guidelines. Results:  The linearity was observed in the range of 20-100 µg/ml with a regression (R2) value of 0.999. Developed method was specific with no interactions and accurate with 100.11% for allopurinol and 99.54% for its related substance. The limit of detection for allopurinol was 2 µg/ml and for related substance was 0.0.1 µg/ml. The limit of quantification for allopurinol was 6 µg/ml and for related substance was 0.03 µg/ml respectively. The percentage relative standard deviation was found to be NMT 2 which indicates that the proposed method was precise and robust. Conclusion:  The developed method was simple, precise and accurate and can be successfully employed for the estimation of allopurinol in bulk and tablet dosage form.



Sign in / Sign up

Export Citation Format

Share Document