scholarly journals Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications

Separations ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Mervette El Batouti ◽  
Nouf F. Alharby ◽  
Mahmoud M. Elewa

This review investigates antifouling agents used in the process of membrane separation (MS), in reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), microfiltration (MF), membrane distillation (MD), and membrane bioreactors (MBR), and clarifies the fouling mechanism. Membrane fouling is an incomplete substance formed on the membrane surface, which will quickly reduce the permeation flux and damage the membrane. Foulant is colloidal matter: organic matter (humic acid, protein, carbohydrate, nano/microplastics), inorganic matter (clay such as potassium montmorillonite, silica salt, metal oxide, etc.), and biological matter (viruses, bacteria and microorganisms adhering to the surface of the membrane in the case of nutrients) The stability and performance of the tested nanometric membranes, as well as the mitigation of pollution assisted by electricity and the cleaning and repair of membranes, are reported. Physical, chemical, physico-chemical, and biological methods for cleaning membranes. Biologically induced biofilm dispersion effectively controls fouling. Dynamic changes in membrane foulants during long-term operation are critical to the development and implementation of fouling control methods. Membrane fouling control strategies show that improving membrane performance is not only the end goal, but new ideas and new technologies for membrane cleaning and repair need to be explored and developed in order to develop future applications.

2021 ◽  
Vol 3 ◽  
Author(s):  
Andres Felipe Novoa ◽  
Johannes S. Vrouwenvelder ◽  
Luca Fortunato

The use of algal biotechnologies in the production of biofuels, food, and valuable products has gained momentum in recent years, owing to its distinctive rapid growth and compatibility to be coupled to wastewater treatment in membrane photobioreactors. However, membrane fouling is considered a main drawback that offsets the benefits of algal applications by heavily impacting the operation cost. Several fouling control strategies have been proposed, addressing aspects related to characteristics in the feed water and membranes, operational conditions, and biomass properties. However, the lack of understanding of the mechanisms behind algal biofouling and control challenges the development of cost-effective strategies needed for the long-term operation of membrane photobioreactors. This paper reviews the progress on algal membrane fouling and control strategies. Herein, we summarize information in the composition and characteristics of algal foulants, namely algal organic matter, cells, and transparent exopolymer particles; and review their dynamic responses to modifications in the feedwater, membrane surface, hydrodynamics, and cleaning methods. This review comparatively analyzes (i) efficiency in fouling control or mitigation, (ii) advantages and drawbacks, (iii) technological performance, and (iv) challenges and knowledge gaps. Ultimately, the article provides a primary reference of algal biofouling in membrane-based applications.


2017 ◽  
Vol 34 (1) ◽  
Author(s):  
Rakesh Baghel ◽  
Sushant Upadhyaya ◽  
Kailash Singh ◽  
Satyendra P. Chaurasia ◽  
Akhilendra B. Gupta ◽  
...  

AbstractThe main aim of this article is to provide a state-of-the-art review of the experimental studies on vacuum membrane distillation (VMD) process. An introduction to the history of VMD is carried out along with the other membrane distillation configurations. Recent developments in process, characterization of membrane, module design, transport phenomena, and effect of operating parameters on permeate flux are discussed for VMD in detail. Several heat and mass transfer correlations obtained by various researchers for different VMD modules have been discussed. The impact of membrane fouling with its control in VMD is discussed in detail. In this paper, temperature polarization coefficient and concentration polarization coefficient are elaborated in detail. Integration of VMD with other membrane separation processes/industrial processes have been explained to improve the performance of the system and make it more energy efficient. A critical evaluation of the VMD literature is incorporated throughout this review.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 934
Author(s):  
Sundararajan Parani ◽  
Oluwatobi Samuel Oluwafemi

Membrane distillation (MD) is a developing membrane separation technology for water treatment that involves a vapor transport driven by the vapor pressure gradient across the hydrophobic membrane. MD has gained wide attention in the last decade for various separation applications, including the separation of salts, toxic heavy metals, oil, and organic compounds from aqueous solutions. Compared with other conventional separation technologies such as reverse osmosis, nanofiltration, or thermal distillation, MD is very attractive due to mild operating conditions such as low temperature and atmospheric pressure, and 100% theoretical salt rejection. In this review, membrane distillation’s principles, recent MD configurations with their advantages and limitations, membrane materials, fabrication of membranes, and their surface engineering for enhanced hydrophobicity are reviewed. Moreover, different types of membrane fouling and their control methods are discussed. The various applications of standalone MD and hybrid MD configurations reported in the literature are detailed. Furthermore, studies on the MD-based pilot plants installed around the world are covered. The review also highlights challenges in MD performance and future directions.


2018 ◽  
Vol 14 (s1) ◽  
pp. 89-99
Author(s):  
Balázs Lemmer ◽  
Szabolcs Kertész ◽  
Gábor Keszthelyi-Szabó ◽  
Kerime Özel ◽  
Cecilia Hodúr

Membrane separation processes are currently proven technologies in many areas. The main limitation of these processes is the accumulation of matter at the membrane surface which leads to two phenomena: concentration polarization and membrane fouling. According to the publications of numerous authors permeate flux could be increased by sonication. Our work focuses on separation of real broth by sonicated ultrafiltration. The broth was originated from hydrolysis of grounded corn-cob by xylanase enzyme. The filtration was carried out in a laboratory batch stirred cell with a sonication rod sonicator. In our work the effect of the stirring, the intensity of sonication and the membrane-transducer distance was studied on the efficiency of the ultrafiltration and on the quality of separated enzymes. Results reveal that xylanase enzyme can be effectively separated from real fermentation broth by ultrafiltration and enzymes keep their activity after the process. Enzyme activity tests show that low energy sonication is not harmful to the enzyme.


2017 ◽  
Vol 23 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Xiaoying Zhu ◽  
Renbi Bai

Background: Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The “cold” separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. Methods: A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. Results: The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Conclusion: Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 369
Author(s):  
Shengji Xia ◽  
Xinran Zhang ◽  
Yuanchen Zhao ◽  
Fibor J. Tan ◽  
Pan Li ◽  
...  

The membrane separation process is being widely used in water treatment. It is very important to control membrane fouling in the process of water treatment. This study was conducted to evaluate the efficiency of a pre-oxidation-coagulation flat ceramic membrane filtration process using different oxidant types and dosages in water treatment and membrane fouling control. The results showed that under suitable concentration conditions, the effect on membrane fouling control of a NaClO pre-oxidation combined with a coagulation/ceramic membrane system was better than that of an O3 system. The oxidation process changed the structure of pollutants, reduced the pollution load and enhanced the coagulation process in a pre-oxidation-coagulation system as well. The influence of the oxidant on the filtration system was related to its oxidizability and other characteristics. NaClO and O3 performed more efficiently than KMnO4. NaClO was more conducive to the removal of DOC, and O3 was more conducive to the removal of UV254.


Author(s):  
Sina Jahangiri Mamouri ◽  
Volodymyr V. Tarabara ◽  
André Bénard

Deoiling of produced or impaired waters associated with oil and gas production represents a significant challenge for many companies. Centrifugation, air flotation, and hydrocyclone separation are the current methods of oil removal from produced water [1], however the efficiency of these methods decreases dramatically for droplets smaller than approximately 15–20 μm. More effective separation of oil-water mixtures into water and oil phases has the potential to both decrease the environmental footprint of the oil and gas industry and improve human well-being in regions such as the Gulf of Mexico. New membrane separation processes and design of systems with advanced flow management offer tremendous potential for improving oil-water separation efficacy. However, fouling is a major challenge in membrane separation [2]. In this study, the behavior of oil droplets and their interaction with crossflow filtration (CFF) membranes (including membrane fouling) is studied using computational fluid dynamics (CFD) simulations. A model for film formation on a membrane surface is proposed for the first time to simulate film formation on membrane surfaces. The bulk multiphase flow is modeled using an Eulerian-Eulerian multiphase flow model. A wall film is developed from mass and momentum balances [3] and implemented to model droplet deposition and membrane surface blockage. The model is used to predict film formation and subsequent membrane fouling, and allow to estimate the actual permeate flux. The results are validated using available experimental data.


2008 ◽  
Vol 57 (5) ◽  
pp. 773-779 ◽  
Author(s):  
Xianghua Wen ◽  
Pengzhe Sui ◽  
Xia Huang

In this study, ultrasound was applied to control membrane fouling development online in an anaerobic membrane bioreactor (AMBR). Experimental results showed that membrane fouling could be controlled effectively by ultrasound although membrane damage may occur under some operational conditions. Based upon the observation on the damaged membrane surface via SEM, two mechanisms causing membrane damage by exerting ultrasound are inferred as micro particle collide on the membrane surface and chemical interaction between membrane materials and hydroxyl radicals produced by acoustic cavitations. Not only membrane damage but also membrane fouling control and membrane fouling cleaning were resulted from these mechanisms. Properly selecting ultrasonic intensity and working time, and keeping a certain thickness of cake layer on membrane surface could be effective ways to protect membrane against damage.


2018 ◽  
Vol 30 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Dong-Wan Cho ◽  
Gihoon Kwon ◽  
Jeongmin Han ◽  
Hocheol Song

In this study, the influence of humic acid on the treatment of coalbed methane water by direct contact membrane distillation was examined with bench-scale test unit. During short-term distillation (1000 min), high level of humic acid above 50 ppm resulted in significant decrease in permeate flux, while low level of humic acid (∼2 ppm) had little influence on the flux. For the long-term distillation (5000 min), the flux decline began at 3400 min in the presence of 5 ppm humic acid and 5 mM Ca2+, and decreased to ∼40% of initial flux at 5000 min. The spectroscopic analysis of the membrane used revealed that the surface was covered by hydrophilic layers mainly composed of calcite. The membrane fouling effect of humic acid became more significant in the presence of Ca2+ due to more facile calcite formation on the membrane surface. It was demonstrated that humic acid enhanced CaCO3 deposition on the membrane surfaces, thereby expediting the scaling phenomenon.


2019 ◽  
Vol 222 ◽  
pp. 321-331 ◽  
Author(s):  
Muhammad B. Asif ◽  
Zulqarnain Fida ◽  
Arbab Tufail ◽  
Jason P. van de Merwe ◽  
Frederic D.L. Leusch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document