scholarly journals Sonicated membrane separation

2018 ◽  
Vol 14 (s1) ◽  
pp. 89-99
Author(s):  
Balázs Lemmer ◽  
Szabolcs Kertész ◽  
Gábor Keszthelyi-Szabó ◽  
Kerime Özel ◽  
Cecilia Hodúr

Membrane separation processes are currently proven technologies in many areas. The main limitation of these processes is the accumulation of matter at the membrane surface which leads to two phenomena: concentration polarization and membrane fouling. According to the publications of numerous authors permeate flux could be increased by sonication. Our work focuses on separation of real broth by sonicated ultrafiltration. The broth was originated from hydrolysis of grounded corn-cob by xylanase enzyme. The filtration was carried out in a laboratory batch stirred cell with a sonication rod sonicator. In our work the effect of the stirring, the intensity of sonication and the membrane-transducer distance was studied on the efficiency of the ultrafiltration and on the quality of separated enzymes. Results reveal that xylanase enzyme can be effectively separated from real fermentation broth by ultrafiltration and enzymes keep their activity after the process. Enzyme activity tests show that low energy sonication is not harmful to the enzyme.

Author(s):  
Sina Jahangiri Mamouri ◽  
Volodymyr V. Tarabara ◽  
André Bénard

Deoiling of produced or impaired waters associated with oil and gas production represents a significant challenge for many companies. Centrifugation, air flotation, and hydrocyclone separation are the current methods of oil removal from produced water [1], however the efficiency of these methods decreases dramatically for droplets smaller than approximately 15–20 μm. More effective separation of oil-water mixtures into water and oil phases has the potential to both decrease the environmental footprint of the oil and gas industry and improve human well-being in regions such as the Gulf of Mexico. New membrane separation processes and design of systems with advanced flow management offer tremendous potential for improving oil-water separation efficacy. However, fouling is a major challenge in membrane separation [2]. In this study, the behavior of oil droplets and their interaction with crossflow filtration (CFF) membranes (including membrane fouling) is studied using computational fluid dynamics (CFD) simulations. A model for film formation on a membrane surface is proposed for the first time to simulate film formation on membrane surfaces. The bulk multiphase flow is modeled using an Eulerian-Eulerian multiphase flow model. A wall film is developed from mass and momentum balances [3] and implemented to model droplet deposition and membrane surface blockage. The model is used to predict film formation and subsequent membrane fouling, and allow to estimate the actual permeate flux. The results are validated using available experimental data.


2017 ◽  
Vol 34 (1) ◽  
Author(s):  
Rakesh Baghel ◽  
Sushant Upadhyaya ◽  
Kailash Singh ◽  
Satyendra P. Chaurasia ◽  
Akhilendra B. Gupta ◽  
...  

AbstractThe main aim of this article is to provide a state-of-the-art review of the experimental studies on vacuum membrane distillation (VMD) process. An introduction to the history of VMD is carried out along with the other membrane distillation configurations. Recent developments in process, characterization of membrane, module design, transport phenomena, and effect of operating parameters on permeate flux are discussed for VMD in detail. Several heat and mass transfer correlations obtained by various researchers for different VMD modules have been discussed. The impact of membrane fouling with its control in VMD is discussed in detail. In this paper, temperature polarization coefficient and concentration polarization coefficient are elaborated in detail. Integration of VMD with other membrane separation processes/industrial processes have been explained to improve the performance of the system and make it more energy efficient. A critical evaluation of the VMD literature is incorporated throughout this review.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
A. Beicha ◽  
R. Zaamouch ◽  
N. M. Sulaiman

Membrane processes exist for most of the fluid separations encountered in industry. The most widely used is membrane ultrafiltration, pressure driven process which is capable of separating particles in the approximate size range of 0.001 to 0.1 μm. The design of membrane separation processes, like all other processes, requires quantitative expressions relating material properties to separation performance. The factors controlling the performance of ultrafiltration are extensively reviewed. There have been a number of seminal approaches in this field. Most have been based on the rate limiting effects of the concentration polarization of the separated particles at the membrane surface. Various rigorous, empirical and intuitive models exist, which have been critically assessed in terms of their predictive capability and applicability. The decision as to which of the membrane filtration models is the most correct in predicting permeation rates is a matter of difficulty and appears to depend on the nature of the dispersion to separated.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1327
Author(s):  
Nour AlSawaftah ◽  
Waad Abuwatfa ◽  
Naif Darwish ◽  
Ghaleb Husseini

Membrane-based separation has gained increased popularity over the past few decades, particularly reverse osmosis (RO). A major impediment to the improved performance of membrane separation processes, in general, is membrane fouling. Fouling has detrimental effects on the membrane’s performance and integrity, as the deposition and accumulation of foulants on its surface and/or within its pores leads to a decline in the permeate flux, deterioration of selectivity, and permeability, as well as a significantly reduced lifespan. Several factors influence the fouling-propensity of a membrane, such as surface morphology, roughness, hydrophobicity, and material of fabrication. Generally, fouling can be categorized into particulate, organic, inorganic, and biofouling. Efficient prediction techniques and diagnostics are integral for strategizing control, management, and mitigation interventions to minimize the damage of fouling occurrences in the membranes. To improve the antifouling characteristics of RO membranes, surface enhancements by different chemical and physical means have been extensively sought after. Moreover, research efforts have been directed towards synthesizing membranes using novel materials that would improve their antifouling performance. This paper presents a review of the different membrane fouling types, fouling-inducing factors, predictive methods, diagnostic techniques, and mitigation strategies, with a special focus on RO membrane fouling.


Separations ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Mervette El Batouti ◽  
Nouf F. Alharby ◽  
Mahmoud M. Elewa

This review investigates antifouling agents used in the process of membrane separation (MS), in reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), microfiltration (MF), membrane distillation (MD), and membrane bioreactors (MBR), and clarifies the fouling mechanism. Membrane fouling is an incomplete substance formed on the membrane surface, which will quickly reduce the permeation flux and damage the membrane. Foulant is colloidal matter: organic matter (humic acid, protein, carbohydrate, nano/microplastics), inorganic matter (clay such as potassium montmorillonite, silica salt, metal oxide, etc.), and biological matter (viruses, bacteria and microorganisms adhering to the surface of the membrane in the case of nutrients) The stability and performance of the tested nanometric membranes, as well as the mitigation of pollution assisted by electricity and the cleaning and repair of membranes, are reported. Physical, chemical, physico-chemical, and biological methods for cleaning membranes. Biologically induced biofilm dispersion effectively controls fouling. Dynamic changes in membrane foulants during long-term operation are critical to the development and implementation of fouling control methods. Membrane fouling control strategies show that improving membrane performance is not only the end goal, but new ideas and new technologies for membrane cleaning and repair need to be explored and developed in order to develop future applications.


Author(s):  
Obinna Aronu ◽  
Harvey Abramowitz ◽  
Agbai George Nnanna

Abstract The clogging of filtration membrane by particles otherwise known as fouling is a major concern in membrane filtration technology due to severe flux reduction associated with it, which results to the reduction of membrane lifespan, reduced system performance and increased process and operating costs in industries that utilize membrane in their production process. This is because the cleaning or replacement of the fouled membrane requires production to be interrupted for the cleaning process or the entire system to be shut down for the replacement process to take place, leading to great loses to the industries involved. Many approaches have been devised over the years through research to tackle this problem, some of which not only undermine the performance of the filtration membrane but also contribute to great loses to industries that apply them. Cheaper and more efficient means of fouling control remains the key to salvaging this problem. This work proposes a water filtration system in which piezoelectric crystals attached at strategic points on a tubular polyvinylidene fluoride (PVDF) membrane are used to increase flux and delay the clogging of the pores of the filtration membrane by particles during water filtration. Filtration tests with mud solution show that the membrane vibrated with piezoelectrics reduced the clogging of the pores and increased permeate flux of the filtration process as compared with the case where the membrane was not vibrated with piezoelectrics, suggesting that vibrating the system with piezoelectrics is a good fouling reduction method that can be used in fluid separation processes. To optimize the permeate flux production of the system and fouling reduction, the anti-fouling effects of the piezoelectric crystals on the membrane surface is investigated through experiments together with the effects of voltage application, positioning and placement distance of the piezoelectrics and some other variables involved in this work.


2014 ◽  
Vol 8 (2) ◽  
pp. 18-22 ◽  
Author(s):  
Szabolcs Kertész ◽  
T. B. De Freitas ◽  
Cecília Hodúr

The wider applications of all membrane separation processes have a main obstacle, namely the fouling phenomena, which have to be understood in more details. Surface properties, hydrophilic and hydrophobic characteristics of a polymer membrane can be determined by measuring the contact angle. The hydrophilicity of a membrane has an important influence on its performances, like permeate flux, membrane rejection or membrane fouling characteristics. In our work the contact angles of three kinds of typically commercial ultrafiltration (UF-PES-4), nanofiltration (NE-90) and reverse osmosis (LFC-30) membranes were firstly investigated and compared by contact angle goniometer measurements. The relationships between the contact angles were researched by well considering the effects of membrane sample pretreatments by distilled water prewetting and water droplet volume. Furthermore, the effects of prewetting, water droplet contact time on different molecular weight cut-off ultrafiltration membranes’ surface and droplet pH on the contact angle values were also investigated. Moreover, fresh, clean and dry, as well as pretreated, and fouled UF membranes were also measured and compared.


2017 ◽  
Vol 23 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Xiaoying Zhu ◽  
Renbi Bai

Background: Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The “cold” separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. Methods: A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. Results: The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Conclusion: Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field.


2006 ◽  
Vol 6 (1) ◽  
pp. 69-78 ◽  
Author(s):  
T. Harif ◽  
M. Hai ◽  
A. Adin

Electroflocculation (EF) is a coagulation/flocculation process in which active coagulant species are generated in situ by electrolytic oxidation of an appropriate anode material. The effect of colloidal suspension pretreatment by EF on membrane fouling was measured by flux decline at constant pressure. An EF cell was operated in batch mode and comprised two flat sheet electrodes, an aluminium anode and stainless steel cathode, which were immersed in the treated suspension, and connected to an external DC power supply. The cell was run at constant current between 0.06–0.2A. The results show that pre-EF enhances the permeate flux at pH 5 and 6.5, but only marginal improvement is observed at pH 8. At all pH values cake formation on the membrane surface was observed. The differences in membrane behavior can be explained by conventional coagulation theory and transitions between aluminium mononuclear species which affect particle characteristics and consequently cake properties. At pH 6.5, where sweep floc mechanism dominates due to increased precipitation of aluminium hydroxide, increased flux rates were observed. It is evident that EF can serve as an efficient pretreatment to ultrafiltration of colloid particles.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2648
Author(s):  
Sylwia Mozia ◽  
Magdalena Janus ◽  
Sławomira Bering ◽  
Krzysztof Tarnowski ◽  
Jacek Mazur ◽  
...  

This paper describes the investigations on the possibilities of treatment of wastewater generated in an industrial laundry with application of a combined biological-photooxidation- membrane system aimed at water recycle and reuse. The two treatment schemes were compared: 1) scheme A consisting of a treatment in a moving bed biological reactor (MBBR) followed by microfiltration (MF) and nanofiltration (NF), and 2) scheme B comprising MBBR followed by oxidation by photolysis enhanced with in situ generated O3 (UV/O3) after which MF and NF were applied. The removal efficiency in MBBR reached 95–97% for the biochemical oxygen demand; 90–93% for the chemical oxygen demand and 89–99% for an anionic and a nonionic surfactants. The application of UV/O3 system allowed to decrease the content of the total organic carbon by 68% after 36 h of operation with a mineralization rate of 0.36 mg/L·h. Due to UV/O3 pretreatment, a significant mitigation of membrane fouling in the case of both MF and NF processes was achieved. The MF permeate flux in the system B was over two times higher compared to that in the system A. Based on the obtained results it was concluded that the laundry wastewater pretreated in the MBBR-UV/O3-MF-NF system could be recycled to any stage of the laundry process.


Sign in / Sign up

Export Citation Format

Share Document