scholarly journals The Acceleration and Deceleration Profiles of U-18 Women’s Basketball Players during Competitive Matches

Sports ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 165 ◽  
Author(s):  
María Reina ◽  
Javier García-Rubio ◽  
José Pino-Ortega ◽  
Sergio J. Ibáñez

The ability of a player to perform high-intensity actions can be linked to common requirements of team sports, and the ability to accelerate can be an important factor in successfully facing the opponent. The aim of this study was to determine the acceleration and deceleration profiles of U-18 women’s basketball players during competitive matches. This study categorized accelerations and decelerations by playing position and quarter. Forty-eight U-18 female basketball players from the same Spanish league participated in this study. Each player was equipped with a WimuProTM inertial device. Accelerations/decelerations were recorded. The number of accelerations and decelerations, intensity category, and type were recorded. These variables varied between quarters (first quarter, second quarter, third quarter, and fourth quarter) and playing positions (Guard, Forward and Center). The shorter but more intense accelerations took place in the last quarter, due to the tight results of the matches. Besides, players in the Guard positions performed more accelerations and their intensity was greater than that of other positions. An acceleration profile was established for the quarters of a basketball game, and was shown to depend on the playing position, being different for Guards, Forwards and Centers in U-18 women’s basketball players.

2015 ◽  
Vol 46 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Vytautas Pliauga ◽  
Sigitas Kamandulis ◽  
Gintarė Dargevičiūtė ◽  
Jan Jaszczanin ◽  
Irina Klizienė ◽  
...  

AbstractDespite extensive data regarding the demands of playing basketball, the relative importance of factors that cause fatigue and muscle potentiation has been explored only tentatively and remains unclear. The aim of this experimental field study was to assess changes in leg muscle power and relate these changes to body temperature modifications and indices of exercise-induced muscle damage in response to a simulated basketball game. College-level male basketball players (n=10) were divided into two teams to play a simulated basketball game. Ten-meter sprint and vertical counter-movement jump tests, core body temperature and creatine-kinase activity were measured within 48 h after the game. The participants’ body temperatures increased after a warm-up (1.9%, p<0.05), continued to increase throughout the game, and reached 39.4 ± 0.4°C after the fourth quarter (p<0.05). The increase in temperature during the warm-up was accompanied by an improvement in the 10-meter sprint time (5.5%, p<0.05) and jump height (3.8%, p<0.05). The players were able to maintain leg power up to the fourth quarter, i.e., during the major part of the basketball game. There was a significant increase in creatine-kinase at 24 h (>200%, p<0.05) and 48 h (>30%, p<0.05) after the game, indicating damage to the players’ muscles. The basketball players’ sprint and jump performance appear to be at least in part associated with body temperature changes, which might contribute to counteract fatigue during the larger part of a basketball game.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4277
Author(s):  
Carlos D. Gómez-Carmona ◽  
David Mancha-Triguero ◽  
José Pino-Ortega ◽  
Sergio J. Ibáñez

The external workload measured in one anatomical location does not determine the total load supported by the human body. Therefore, the purpose of the present study was to characterize the multi-location external workload through PlayerLoadRT of 13 semi-professional women’s basketball players, as well as to analyze differences among anatomical locations (inter-scapulae line, lumbar region, 2× knee, 2× ankle) and laterality (left vs. right) during five tests that represent the most common movements in basketball—(a) linear locomotion, 30-15 IFT; (b) acceleration and deceleration, 16.25-m RSA (c) curvilinear locomotion, 6.75-m arc (d) jump, Abalakov test (e) small-sided game, 10’ 3 vs. 3 10 × 15-m. Statistical analysis was composed of a repeated-measures t-test and eta partial squared effect size. Regarding laterality, differences were found only in curvilinear locomotion, with a higher workload in the outer leg (p < 0.01; ηp2 = 0.33–0.63). In the vertical profile, differences among anatomical locations were found in all tests (p < 0.01; ηp2 = 0.56–0.98). The nearer location to ground contact showed higher values except between the scapulae and lumbar region during jumps (p = 0.83; ηp2 = 0.00). In conclusion, the multi-location assessment of external workload through a previously validated test battery will make it possible to understand the individual effect of external workload in each anatomical location that depends on the type of locomotion. These results should be considered when designing specific strategies for training and injury prevention.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 324
Author(s):  
Sergio J. Ibáñez ◽  
Carlos D. Gómez-Carmona ◽  
David Mancha-Triguero

In previous studies found in the literature speed (SP), acceleration (ACC), deceleration (DEC), and impact (IMP) zones have been created according to arbitrary thresholds without considering the specific workload profile of the players (e.g., sex, competitive level, sport discipline). The use of statistical methods based on raw data could be considered as an alternative to be able to individualize these thresholds. The study purposes were to: (a) individualize SP, ACC, DEC, and IMP zones in two female professional basketball teams; (b) characterize the external workload profile of 5 vs. 5 during training sessions; and (c) compare the external workload according to the competitive level (first vs. second division). Two basketball teams were recorded during a 15-day preseason microcycle using inertial devices with ultra-wideband indoor tracking technology and microsensors. The zones of external workload variables (speed, acceleration, deceleration, impacts) were categorized through k-means clusters. Competitive level differences were analyzed with Mann–Whitney’s U test and with Cohen’s d effect size. Five zones were categorized in speed (<2.31, 2.31–5.33, 5.34–9.32, 9.33–13.12, 13.13–17.08 km/h), acceleration (<0.50, 0.50–1.60, 1.61–2.87, 2.88–4.25, 4.26–6.71 m/s2), deceleration (<0.37, 0.37–1.13, 1.14–2.07, 2.08–3.23, 3.24–4.77 m/s2), and impacts (<1, 1–2.99, 3–4.99, 5–6.99, 7–10 g). The women’s basketball players covered 60–51 m/min, performed 27–25 ACC-DEC/min, and experienced 134–120 IMP/min. Differences were found between the first and second division teams, with higher values in SP, ACC, DEC, and IMP in the first division team (p < 0.03; d = 0.21–0.56). In conclusion, k-means clustering can be considered as an optimal tool to categorize intensity zones in team sports. The individualization of external workload demands according to the competitive level is fundamental for designing training plans that optimize sports performance and reduce injury risk in sport.


2019 ◽  
Vol 49 (12) ◽  
pp. 1923-1947 ◽  
Author(s):  
Damian J. Harper ◽  
Christopher Carling ◽  
John Kiely

Abstract Background The external movement loads imposed on players during competitive team sports are commonly measured using global positioning system devices. Information gleaned from analyses is employed to calibrate physical conditioning and injury prevention strategies with the external loads imposed during match play. Intense accelerations and decelerations are considered particularly important indicators of external load. However, to date, no prior meta-analysis has compared high and very high intensity acceleration and deceleration demands in elite team sports during competitive match play. Objective The objective of this systematic review and meta-analysis was to quantify and compare high and very high intensity acceleration vs. deceleration demands occurring during competitive match play in elite team sport contexts. Methods A systematic review of four electronic databases (CINAHL, MEDLINE, SPORTDiscus, Web of Science) was conducted to identify peer-reviewed articles published between January 2010 and April 2018 that had reported higher intensity (> 2.5 m·s−2) accelerations and decelerations concurrently in elite team sports competitive match play. A Boolean search phrase was developed using key words synonymous to team sports (population), acceleration and deceleration (comparators) and match play (outcome). Articles only eligible for meta-analysis were those that reported either or both high (> 2.5 m·s−2) and very high (> 3.5 m·s−2) intensity accelerations and decelerations concurrently using global positioning system devices (sampling rate: ≥ 5 Hz) during elite able-bodied (mean age: ≥ 18 years) team sports competitive match play (match time: ≥ 75%). Separate inverse random-effects meta-analyses were conducted to compare: (1) standardised mean differences (SMDs) in the frequency of high and very high intensity accelerations and decelerations occurring during match play, and (2) SMDs of temporal changes in high and very high intensity accelerations and decelerations across first and second half periods of match play. Using recent guidelines recommended for the collection, processing and reporting of global positioning system data, a checklist was produced to help inform a judgement about the methodological limitations (risk of detection bias) aligned to ‘data collection’, ‘data processing’ and ‘normative profile’ for each eligible study. For each study, each outcome was rated as either ‘low’, ‘unclear’ or ‘high’ risk of bias. Results A total of 19 studies met the eligibility criteria, comprising seven team sports including American Football (n = 1), Australian Football (n = 2), hockey (n = 1), rugby league (n = 4), rugby sevens (n = 3), rugby union (n = 2) and soccer (n = 6) with a total of 469 male participants (mean age: 18–29 years). Analysis showed only American Football reported a greater frequency of high (SMD = 1.26; 95% confidence interval [CI] 1.06–1.43) and very high (SMD = 0.19; 95% CI − 0.42 to 0.80) intensity accelerations compared to decelerations. All other sports had a greater frequency of high and very high intensity decelerations compared to accelerations, with soccer demonstrating the greatest difference for both the high (SMD = − 1.74; 95% CI − 1.28 to − 2.21) and very high (SMD = − 3.19; 95% CI − 2.05 to − 4.33) intensity categories. When examining the temporal changes from the first to the second half periods of match play, there was a small decrease in both the frequency of high and very high intensity accelerations (SMD = 0.50 and 0.49, respectively) and decelerations (SMD = 0.42 and 0.46, respectively). The greatest risk of bias (40% ‘high’ risk of bias) observed across studies was in the ‘data collection’ procedures. The lowest risk of bias (35% ‘low’ risk of bias) was found in the development of a ‘normative profile’. Conclusions To ensure that elite players are optimally prepared for the high-intensity accelerations and decelerations imposed during competitive match play, it is imperative that players are exposed to comparable demands under controlled training conditions. The results of this meta-analysis, accordingly, can inform practical training designs. Finally, guidelines and recommendations for conducting future research, using global positioning system devices, are suggested.


2018 ◽  
Vol 1 (80) ◽  
Author(s):  
Audrius Gocentas ◽  
Anatoli Landõr ◽  
Aleksandras Kriščiūnas

Research background and hypothesis. Replete schedule of competitions and intense training are features of contemporary team sports. Athletes, especially the most involved ones, may not have enough time to recover. As a consequence, aggregated fatigue can manifest in some undesirable form and affect athlete’s performance and health.Research aim. The aim of this study was to evaluate the changes in heart rate recovery (HRR) and investigate possible relations with sport-specifi c measures of effi cacy in professional basketball players during competition season.Research methods. Eight male high-level basketball players (mean ± SD, body mass, 97.3 ± 11.33 kg; height 2.02 ± 0.067 m, and age 23 ± 3.12 years) were investigated. The same basketball specifi c exercise was replicated several times from September till April during the practice sessions in order to assess the personal trends of HRR. Heart rate monitoring was performed using POLAR TEAM SYSTEM. Investigated athletes were ranked retrospectively according to the total amount of minutes played and the coeffi cients of effi cacy. Research results. There were signifi cant differences in the trends of HRR between the investigated players. The most effective players showed decreasing trends of HRR in all cases of ranking.Discussion and conclusions. Research fi ndings have shown that the quality of heart rate recovery differs between basketball players of the same team and could be associated with sport-specifi c effi cacy and competition playing time.Keywords: adaptation, autonomic control, monitoring training.


2020 ◽  
Vol 6 (25) ◽  
pp. 760-768
Author(s):  
Nida Gencer ÖZKAN ◽  
◽  
Tülin ATAN

The aim of this study was to investigate the basketball players’, active in Turkey Women’s Basketball Super and 1st Leagues, empathy levels according to their marital status, educational status in addition to age and marital status of their coach; and to evaluate leadership characteristics and behavior of their coaches according to athlete’s perception. Another aim was to analyze the relation between empathy levels of the athletes and athletes’ perception of coaching behavior. 264 (age; 24.61±5.53 year) female athletes playing in Turkey Women’s Basketball Super and 1st Leagues participated in this study. Leadership Scale for Sports (LSS)-version of Athletes’ Perception of Coaching Behavior that developed by Chelladurai and Saleh, and adapted by Tiryaki and Toros in 2006 was used as data collection tool. Athletes’ perceptions of leadership style and behavior of their coach were evaluated in five different factors. A five-factor solution with 40 items describing the most salient dimensions of coaching behavior was selected as the most meaningful. Empathy levels of the athletes were determined by using Emphatic Tendency Scale which was developed by Dökmen (1988) and composed of 20 items. Empathy levels of the athletes showed no statistically significant difference in terms of any variable (p>0.05). There was no statistically significant difference in athletes’ perceptions of coaching behaviors in terms of marital status of the athlete and age of their coach (p>0.05). In terms of educational status of athletes and marital status of their coach, there were statistically significant differences in athletes’ perceptions of coaching behaviors (p<0.05 and p<0.01). Positive and meaningful correlation was found between empathy scores of the athletes and training and instruction behavior (r=.172**) and autocratic behavior (r=.154*) of the coach (p<0.05 and p<0.01). Educational status of the athletes and marital status of their coach are influental in athletes’ evaluation of their perceptions of coaching behavior. Empathy levels of the athletes are related to their perceptions of coaching behavior.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3441
Author(s):  
Carlos D. Gómez-Carmona ◽  
Sebastián Feu ◽  
José Pino-Ortega ◽  
Sergio J. Ibáñez

The present study analyzed the multi-location external workload profile in basketball players using a previously validated test battery and compared the demands among anatomical locations. A basketball team comprising 13 semi-professional male players was evaluated in five tests (abilities/skills/tests): (a) aerobic, linear movement, 30-15 IFT; (b) lactic anaerobic, acceleration and deceleration, 16.25 m RSA (c) alactic anaerobic, curvilinear movement, 6.75 m arc (d) elastic, jump, Abalakov test (e) physical-conditioning, small-sided game, 10’ 3 vs.3 10 × 15 m. PlayerLoadRT was evaluated at six anatomical locations simultaneously (interscapular line, lumbar region, knees and ankles) by six WIMU PROTM inertial devices attached to the player using an ad hoc integral suit. Statistical analysis was composed of an ANOVA of repeated measures and partial eta squared effect sizes. Significant differences among anatomical locations were found in all tests with higher values in the location nearer to ground contact (p < 0.01). However, differences between lower limb locations were only found in curvilinear movements, with a higher workload in the outside leg (p < 0.01). Additionally, high between-subject variability was found in team players, especially at lower limb locations. In conclusion, multi-location evaluation in sports movements will make it possible to establish an individual external workload profile and design specific strategies for training and injury prevention programs.


Author(s):  
Jinshu Zeng ◽  
Jing Xu ◽  
Yuanhong Xu ◽  
Wu Zhou ◽  
Fei Xu

The aim of the study was to investigate the effects of 4-week small-sided games (SSG) and high-intensity interval training with changes of direction (HIT-COD) on physical performance and specific technical skills in female collegiate basketball players. Nineteen players were divided into SSG (n = 9) and HIT-COD (n = 10) groups, that performed either SSG or HIT-COD three times per week for 4 weeks during the pre-season. Players’ heart rate (HR) and perceived exertion responses (RPE) were assessed during the intervention. Before and after the intervention period, performances were assessed with 30-15 intermittent fitness test (30-15IFT), repeated sprint ability (RSA) test, modified agility T-test (MAT), countermovement jump (CMJ), 20-m sprint, shooting accuracy test, 1 min shooting test, passing test, defensive movement test and control dribble test. Both training interventions led to similar physiological and perceived exertion responses, showing no significant differences in HR ( P = .49, d = 0.2) and RPE ( P = .77, d = 0.1) between groups. Significant improvements were observed in 30-15IFT (SSG: 4.1%, d = 1.5; HIT-COD: 4.2%, d = 1.7), RSAmean (SSG: −2.2%, d = 1.0; HIT-COD: −1.9%, d = 1.0), RSAbest (SSG: −2.0%, d = 0.9; HIT-COD: −2.1%, d = 1.1), MAT (SSG: −7.2%, d = 1.7; HIT-COD: 5.7%, d = 1.5), defensive movement test (SSG: −5.1%, d = 2.1; HIT-COD: −5.8%, d = 1.8) and control dribble test (SSG: −3.4%, d = 1.0; HIT-COD: −2.6%, d = 1.0). The only significant group × time interaction was found ( P = .032, [Formula: see text] = 0.24), with SSG improving 1 min shooting (22.4%, d = 1.0) and HIT-COD performing slightly worse (−2.6%, d = 0.1) after a 4-week intervention. The current study suggests that using SSG is more effective than HIT-COD for female collegiate basketball players in pre-season, since SSG improves physical performance and basketball-specific movements as well as shooting abilities after a 4-week intervention.


2011 ◽  
Vol 2 (3) ◽  
pp. 24-28
Author(s):  
S A Medvedev ◽  
Yu P Zverev

The aim of the present study was to assess the reasons and the pattern of alcohol consumption and the prevalence of alcohol related problems among professional soccer and basketball players. Psychometric instrument included Russian version of "AUDIT". The results demonstrated presence of significant alcoholization of sportsmen, which was reflected in the absence of responders abstaining from alcohol, preference for strong alcoholic beverages, high mean "AUDIT" score (7,4 ± 3,1) and alcohol consumption (401,7 ± 271,2 ml of ethanol per month). About one third of sportsmen consumed alcohol at dangerous level. The typical pattern of alcohol consumption was characterized by frequent intake of alcohol and consumption of 5 and more drinks on a typical day of drinking. About 93% of athletes experienced alcohol related problems.


Sign in / Sign up

Export Citation Format

Share Document