scholarly journals Assessing Soil Metal Levels in an Industrial Environment of Northwestern China and the Phytoremediation Potential of Its Native Plants

2018 ◽  
Vol 10 (8) ◽  
pp. 2686 ◽  
Author(s):  
Yuan Liu ◽  
Yujing Yang ◽  
Changxiao Li ◽  
Xilu Ni ◽  
Wenchao Ma ◽  
...  

Various industrial activities contribute heavy metals to terrestrial ecosystems. In order to evaluate the soil quality of industrial areas and to identify the potential phytoremediator from the native plant species, we collected 45 surface soil samples and 21 plant species in a typical industrial area of northwestern China. The results showed that the average values of the Cd, Cr, As, Pb, Cu, and Zn in the soils were 36.91, 1.67, 7.20, 1.38, 1.27, and 6.66 times, respectively, compared with the corresponding background values. The average single factor pollution index for heavy metals decreased in the order of Cd > As > Zn > Cr > Cu > Pb. The study area was seriously polluted by Cd and As, slightly polluted by Zn, and had relatively little contamination by Cr, Pb, and Cu. In terms of the average Nemerow synthetic pollution index in every sampling site, 97.78% of the samples were seriously polluted and 2.22% of the samples were moderately polluted, which indicated that almost all of the samples in the industrial area were seriously polluted. The results of the biomass, heavy metal concentrations, bioconcentration factors (BCF), and translocation factors (TF) for the native plants showed that Achnatherum splendens for metal Cr presented a phytostabilization potential, Artemisia scoparia and Echinochloa crusgalli for metal Cu and Halogeton arachnoideus for metal Zn presented a phytoextraction potential, and all of the studied plants were limited as phytoremediators for Cd or Pb contaminated soil.

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1458 ◽  
Author(s):  
Said El Hasnaoui ◽  
Mouna Fahr ◽  
Catherine Keller ◽  
Clément Levard ◽  
Bernard Angeletti ◽  
...  

Screening of native plant species from mining sites can lead to identify suitable plants for phytoremediation approaches. In this study, we assayed heavy metals tolerance and accumulation in native and dominant plants growing on abandoned Pb/Zn mining site in eastern Morocco. Soil samples and native plants were collected and analyzed for As, Cd, Cu, Ni, Sb, Pb, and Zn concentrations. Bioconcentration factor (BCF), translocation factor (TF), and biological accumulation coefficient (BAC) were determined for each element. Our results showed that soils present low organic matter content combined with high levels of heavy metals especially Pb and Zn due to past extraction activities. Native and dominant plants sampled in these areas were classified into 14 species and eight families. Principal components analysis separated Artemisia herba-alba with high concentrations of As, Cd, Cu, Ni, and Pb in shoots from other species. Four plant species, namely, Reseda alba, Cistus libanotis, Stipa tenacissima, and Artemisia herba-alba showed strong capacity to tolerate and hyperaccumulate heavy metals, especially Pb, in their tissues. According to BCF, TF, and BAC, these plant species could be used as effective plants for Pb phytoextraction. Stipa tenacissima and Artemisia herba-alba are better suited for phytostabilization of Cd/Cu and Cu/Zn, respectively. Our study shows that several spontaneous and native plants growing on Pb/Zn contaminated sites have a good potential for developing heavy metals phytoremediation strategies.


1998 ◽  
Vol 4 (1) ◽  
pp. 21 ◽  
Author(s):  
Max Abensperg-Traun ◽  
Lyn Atkins ◽  
Richard Hobbs ◽  
Dion Steven

Exotic plants are a major threat to native plant diversity in Australia yet a generic model of the invasion of Australian ecosystems by exotic species is lacking because invasion levels differ with vegetation/soil type and environmental conditions. This study compared relative differences in exotic species invasion (percent cover, spp. richness) and the species richness of herbaceous native plants in two structurally very similar vegetation types, Gimlet Eucalyptus salubris and Wandoo E. capillosa woodlands in the Western Australian wheatbelt. For each woodland type, plant variables were measured for relatively undisturbed woodlands, woodlands with >30 years of livestock grazing history, and woodlands in road-verges. Grazed and road-verge Gimlet and Wandoo woodlands had significantly higher cover of exotic species, and lower species richness of native plants, compared with undisturbed Gimlet and Wandoo. Exotic plant invasion was significantly greater in Gimlet woodlands for both grazed (mean 78% cover) and road-verge sites (mean 42% cover) than in comparable sites in Wandoo woodlands (grazed sites 25% cover, road-verge sites 19% cover). There was no significant difference in the species richness of exotic plants between Wandoo and Gimlet sites for any of the three situations. Mean site richness of native plants was not significantly different between undisturbed Wandoo and undisturbed Gimlet woodlands. Undisturbed woodlands were significantly richer in plant species than grazed and road-verge woodlands for both woodland types. Grazed and road-verge Wandoo sites were significantly richer in plant species than communities in grazed and road-verge Gimlet. The percent cover of exotics was negatively correlated with total (native) plant species richness for both woodland types (Wandoo r = ?0.70, Gimlet r = ?0.87). Of the total native species recorded in undisturbed Gimlet, 83% and 61% were not recorded in grazed and road-verge Gimlet, respectively. This compared with 40% and 33% for grazed and road-verge Wandoo, respectively. Grazed Wandoo and grazed Gimlet sites had significantly fewer native plant species than did road-verge Wandoo and road-verge Gimlet sites. Ecosystem implications of differential invasions by exotic species, and the effects of grazing (disturbance) and other factors influencing susceptibility to exotic plant invasion (landscape, competition and allelopathy) on native species decline are discussed. Exclusion of livestock and adequate methods of control and prevention of further invasions by exotic plants are essential requirements for the conservation of these woodland systems.


2012 ◽  
Vol 30 (1) ◽  
pp. 51 ◽  
Author(s):  
Senilolia H. Tuiwawa ◽  
Gunnar Keppel

Mahogany (Swietenia macrophylla King) plantations cover a considerable area on the south-eastern parts of Viti Levu, Fiji. The understorey of these plantations often comprise a diverse, but undocumented, assemblage of native plant species. This study investigates the diversity, composition and regeneration potential of native plant species in the Wainiveiota mahogany plantation 40?50 years after establishment. Ten 10 m x 10 m plots were alternately placed at 10 m intervals perpendicular to a 200 m line transect. A total of 491 individual plants with dbh ≥ 1 cm, comprising 69 species, 51 genera and 34 families, were sampled. In addition to the exotic mahogany, there were 68 native (39 endemic, 24 indigenous and 5 identified to genus only) species recorded. Girronniera celtidifolia Gaud., Dillenia biflora (A.Gray) Martelli ex Dur. & Jacks and Barringtonia edulis Seem. had the highest recruitment and Endospermum macrophyllum (Muell.Arg.) Pax & Hoffm. was the dominant native species. Syzygium Gaertn. (Myrtaceae) was the most diverse genus and Myrtaceae the most diverse family. With 98% of the sapling recruitment consisting of native species, there is potential for re-establishment of a lowland rainforest dominated by native species over time.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2545
Author(s):  
Kaitlynn Lavallee ◽  
Pushpa Gautam Soti ◽  
Hansapani Rodrigo ◽  
Rupesh Kariyat ◽  
Alexis Racelis

The incorporation of native plant species is central to restoration efforts, but this is often limited by both the availability of seeds and the relatively low viability and germination rates of commercially available seeds. Although pre-sowing treatments are commonly used to improve germination rates of seeds, the efficacy of these treatments is found to vary across species. In this study, we tested how four pre-sow treatments (physical scarification, acid scarification, cold stratification, and aerated hydropriming) affected the viability and seed germination rates of 12 commercially available plant species native to south Texas and commonly used in restoration efforts. Our results show that the viability of the seeds have a wide range, from 78% to 1.25%. Similarly, the total germination rate ranged from 62% to 0%. We found that pre-sowing treatments accelerated the germination rate in 9 of 12 plant species tested, but the effect varied by treatment. Collectively, our results identify various methods to achieve the best germination rates for native plants of south Texas, to help improve restoration efforts across the region.


2021 ◽  
Vol 2 (5) ◽  
pp. 1-10
Author(s):  
Nanven D Nimyel ◽  
Elizabeth S. Chundusu

When the mining process is not properly controlled, it can be a source of heavy metals pollution in the environment. The uptake of these heavy metals in edible parts of vegetables can be a direct source of the metals into the human food chain. This study assessed the concentrations of lead (Pb), manganese (Mn), zinc (Zn), copper (Cu), nickel (Ni) and chromium (Cr) in soil and vegetables obtained from nine (9) farms around mining sites in Mangu LGA. Concentrations of heavy metals in soil and vegetables were determined using atomic absorption spectrophotometer (AAS). The results revealed the concentrations of the heavy metals at the farms to be within the recommended maximum levels of world soils but were higher than their respective controls. This implies that the artisanal mining contributed to the increased values of these heavy metals in the environment. Also, the mean concentrations of the heavy metals at Mangu Halle mining site decreased in the order Mn > Zn > Cr > Cu > Ni > Pb > Cd whereas at Alogwom it decreased in the order Mn > Zn > Pb > Cu > Ni > Cr > Cd. The enrichment factor (EF) of the elements showed deficiency to minimum enrichment for all the heavy metals whereas the pollution index (PI) of the metals indicated very slight contamination to moderate pollution. The results of the heavy metals in the vegetables showed that the bioaccumulation of the metals followed a pattern: Zn > Cu > Pb > Cr > Cd > Ni. Levels of Cd, Pb and Ni in the vegetables were observed to be higher than the recommended limit for vegetables whereas Cu, Cr and Zn exhibited lower values than recommended standards. Thus, their consumption might pose health risk to consumers and therefore there is the need for proper monitoring of the illegal mining activities to reduce health risk and the extent of heavy metals contamination.


2010 ◽  
Vol 100 (5) ◽  
pp. 501-510 ◽  
Author(s):  
N.A. Schellhorn ◽  
R.V. Glatz ◽  
G.M. Wood

AbstractInteractions among insect pests, crops and weeds are well recognised. In fact, the elimination of weed hosts outside of the crop is a common practice to control many insect-vectored viruses. However, little is known about interactions among insect pests, crops and native vegetation, and whether native plants may be used to revegetate areas where weed hosts have been eliminated as part of horticultural management regimes. We used the Northern Adelaide Plains horticultural region (South Australia, Australia) as a model system to study the potential of various plant taxa in hosting four pest thrips (three exotic, one native; Frankliniella occidentalis, F. schultzei, Thrips tabaci and T. imaginis) when located adjacent to, and distant from, horticultural crops. Flower funnels were used for standardised sampling of thrips on flowers from 19 exotic weed and 12 native plant species, representing 13 and three families, respectively. Flowers were sampled monthly over a year, and statistical analyses were performed to identify significant determinants of probability of thrips occurrence and density. Plant family was found to significantly influence both measures for each thrips species. In addition, crop proximity influenced the probability of occurrence for the two Frankliniella species (but only influenced density of the key pest F. occidentalis), and season influenced density of all four pest thrips. All native plant species tested had a low likelihood of hosting the three exotic thrips species. Overall, results suggest that judicious choice of surrounding vegetation has potential to be an important component of integrated pest management (IPM) while increasing biodiversity conservation.


Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 200 ◽  
Author(s):  
S. Manikandan ◽  
S. Chidambaram ◽  
M. V. Prasanna ◽  
Rakesh Roshan Ganayat

The area chosen for study, Krishnagiri district, has a hard rock terrain and the aquifers located there are sparsely recharged by limited rainfall. The study area has a complex geology with hard rock aquifers. To have an overall view of the trace metals concentration in the groundwater of the study area, 39 groundwater samples were collected during Post Monsoon (POM) representing various lithologies. pH, EC, TDS, major ions and 22 heavy metals were analyzed for all the samples. Ca-Cl is the dominant water facies in the groundwater, which indicates the dissolution of ions by local precipitation. The analysis shows the dominance of trace metal levels in groundwater as follows: Zn > Ba > Sr > Fe > Al > B > Mn > Cu > Pb > Ni > V > Li > Rb > Cr > Mo > Se > As > Co > Cd > Ag > Sb > Be. The pollution indices, namely the heavy metal pollution index (HPI) and degree of contamination (Cd) were calculated to assess the drinking and agriculture water usage. The pollution indices show that 2% of samples are polluted with respect to HPI and 3% with respect to the degree of contamination. The heavy metals (Al-Cr-Mn-Fe-Ni-Co-Zn-Ba-Pb) in groundwater show significant correlations with these indices, suggesting that they are affected by weathering of rock matrix with less anthropogenic impact. Stable isotopes (Oxygen and Hydrogen) were analyzed to identify the possible recharge mechanisms in the groundwater. It has been identified that recharge is mainly due to the local precipitation, which is the result of release metals in the groundwater through weathering.


2004 ◽  
Vol 52 (2) ◽  
pp. 141 ◽  
Author(s):  
V. P. Thomson ◽  
M. R. Leishman

Australian soils are naturally low in nutrient concentrations, particularly nitrogen (N) and phosphorus (P). Native plants are well adapted to low-nutrient soils, and can be adversely affected when exposed to higher concentrations of nutrients. The Hawkesbury Sandstone soils in northern Sydney are naturally low in nutrients, but often receive additional nutrient input from urban stormwater run-off. Increases in soil nutrients in urban bushland are associated with the presence of exotic species, and the decline in the diversity of native species. This study tested the hypothesis that high concentrations of nutrients, in particular P, in the disturbed soils of urban bushland, reduce survival of native plants. We examined the survival of native species under five different nutrient concentrations that are typical of nutrient-enriched urban bushland soil, in two glasshouse experiments. The experiments examined both survival of seedlings and survival of 6-month-old plants. We used native species that are adapted to both nutrient-poor and nutrient-rich soils. In general, the survival of native plants decreased with increasing nutrient concentrations. At soil total-P concentrations >200 mg kg–1, most plants died. Seedlings were more sensitive to added nutrients than the 6-month-old plants. Species that were from higher-nutrient soil had consistently higher survival than species from low-nutrient soils, under the nutrient addition treatments. These results suggest that at high soil nutrient concentrations typical of stormwater-affected urban bushland, native plant species of low-nutrient soils will be unable to survive. If ecological restoration works are to be done in such areas, replanting with more mature plants from naturally high-nutrient habitats is likely to be the most successful. However, restoration of these areas may have limited success and they are likely to remain dominated by exotic plant species.


2021 ◽  
Vol 40 (1) ◽  
pp. 16-24
Author(s):  
Mouldi Gamoun ◽  
Mounir Louhaichi

Abstract Nowadays, the ecology and evolutionary potential of alien species are the subjects of several ecological studies. The goal of this study was to compare the feeding preference of Arion ater on seedlings and leaves of alien and native plant species. Seedlings of three native species and one alien species were offered to slugs individually and in combination. Afterward, leaf discs from the native and alien species collected from the same source site of slug’s habitat were offered individually and in combination for slugs. When the new plant emerges, it constitutes a generous source of potential food and slugs would even feed on seedlings, which are not particularly palatable. Nonetheless, when given a choice, slug often preferentially feeds on some food items while ignoring others. Alien plants are more resistant to herbivory than native plants. There is a general tendency for alien species to be less palatable than native species. In general, slugs may eat a wide range of seedlings that are much more attractive than mature plants of the same species. Therefore, the native herbivores were found to attack native plants and promoted alien plants. Consequently, highly unacceptable alien species such as Eucalyptus globulus may play an important role in the restoration process.


2008 ◽  
Vol 26 (2) ◽  
pp. 109-114 ◽  
Author(s):  
Yousef R. Zadegan ◽  
Bridget K. Behe ◽  
Robert Gough

Abstract In a preliminary study, consumer perceptions of native plants in traditional and naturalistic settings was investigated. In Montana, 361 participants in an internet study reported their familiarity with both woody and herbaceous native plant species. Additional data were collected to determine their perceptions of native plants used in naturalistic designs through a conjoint study. Nearly half of the study participants recognized or had purchased most of the native plants shown in photographs. Results of the conjoint study showed that participants placed the greatest relative importance (62%) on landscape style as the most important factor in landscape design. They also preferred a naturalistic style over a more traditional style and mixed plant species to single species. Across all comparisons, the high relative importance of landscape style remained constant and was consistent with prior studies. Plant material (21.9%) and species diversity (16.2%) were half the relative importance of design style and remained relatively consistent through most comparisons. Even among those participants not familiar with native plants and those who had not purchased native plants, native plants were preferred in the landscapes. The demand for native plants may be reaching a critical stage for both commercial growers and the landscape profession. Although this study was limited to one state, results show that consumer interest is present and further investigation is warranted.


Sign in / Sign up

Export Citation Format

Share Document