scholarly journals Correlation between Transit-Oriented Development (TOD), Land Use Catchment Areas, and Local Environmental Transformation

2018 ◽  
Vol 10 (12) ◽  
pp. 4622 ◽  
Author(s):  
Xin Tong ◽  
Yaowu Wang ◽  
Edwin H. W. Chan ◽  
Qingfeng Zhou

Transit-oriented development (TOD) has been recognised as a sustainable planning approach and that is typically designed for a whole city. Individual land use characteristics and the causations have often been ignored. Therefore, the primary objective of this study was to explore the factors that influence the land use catchment area (LCA) characteristics at a station neighborhood level. First, it contributes a methodology to measure the LCA by introducing a new concept. The density gradient was introduced to generate the scale and compactness degree of each station. Second, it provides a theoretical framework for understanding the causes of different LCAs. The partial least squares (PLS) regression model was employed to explore the accessibility effects. By analysing density gradient curves, it reveals that stations grew to fit the negative exponential function. Regarding the scale and form degree of LCAs, the impact of accessibility before and after a station construction have been corroborated. Moreover, the effects of facilities function before construction, distance from main roads, and elevated stations have been emphasized. The results provide support for a more sophisticated concept of catchment area relating to land use at the level of an individual TOD station, while shedding light on the benefits of those engaged in the future design of TOD with due consideration of the local physical environments.

2020 ◽  
Author(s):  
Chen Kuan Ling ◽  
Chang Hsueh Sheng ◽  
Cheng Hao Teng

<p>In recent years, the risk of flooding disasters caused by climate change has increased, and a new concept of runoff sharing has been proposed in China. It is an operation method based on the area of ​​the catchment from the perspective of water conservancy. However, the basin area is also a spatial unit of human economic activity. Social and economic development and the distribution of runoff responsibilities clearly show a mutual measurement relationship, and the land has a certain social responsibility to handle its own runoff. How can it be distributed fairly and efficiently? The issue of responsibility for runoff sharing has become an important issue for joint initiatives in the field of soil and water. </p><p> </p><p>In the case of considering the watershed as a spatial scope, in addition to considering its own hydrological properties, there are also socioeconomic development issues that should be clarified and discussed step by step. Therefore, this study attempts to use the three-stage data envelopment analysis (DEA) method to consider hydrology The concept of interaction with the socio-economic environment takes into account the impact of exogenous factors on the allocation of runoff responsibility, and evaluates the efficiency of runoff responsibility. In view of this, from the standpoint of the government and residents sharing the runoff, this study effectively combines the different types of data of the social, economic, and ecological environments in the catchment areas to carry out a comprehensive assessment, and weighs out the optimal distribution efficiency of the overall river basin. </p><p> </p><p>This study is divided into three parts to clarify the distribution of runoff responsibilities, which are divided into: (1) Establishing an assessment framework for the distribution of river basin runoff responsibilities: Based on the analysis of the spatial unit of the catchment area, an attempt is made to integrate different regional development conditions, which can be summarized Appropriate and appropriate distribution methods; (2) Weighing the fairness and efficiency of the distribution of runoff responsibilities in the spatial unit of the watershed: Point out the current runoff responsibility distribution model and characteristics of the catchment area; (3) Attempt to develop the principles for the use of land use planning, Apply the concept of runoff responsibility to land use planning. </p><p> </p><p>Based on the results of this study, a more fair way to distribute runoff responsibilities is proposed, and a new perspective on social natural equality from the river basin scale is clarified. The key factors that affect the distribution of runoff responsibilities are clear. Efficiently undertake total runoff and provide policy planning advice. Try to discuss the issue of runoff responsibility allocation from the field of urban planning, provide river basin runoff responsibility with a planning vision, strengthen the spatial thinking of water and soil dialogue, and look forward to providing a new model of river basin governance in extreme climates. </p>


2019 ◽  
Vol 15 (1) ◽  
pp. 70 ◽  
Author(s):  
Warsilan Warsilan

As the capital of the province of East Kalimantan, Samarinda City developments has a rapid progress from year to year. Samarinda City Development has a tendency oriented towards infrastructure development without regard to the existence of the quality of the existing environment. Imbalance of development in Samarinda city is to start decreasing the water catchment area, so its make increasing intensity of flood in the Samarinda City. The purpose of this study was to analyze the impact of changes in land use in the Samarinda city on the ability of the water catchment area. This research method using descriptive approach, the data collection system of primary and secondary. Intensity flood in the Samarinda city  is increasing from year to year, this condition happened as a problem that always occurs during the rainy season. Current development trends, always take an area that should be an infiltration  area for Samarinda City. Culture and inadequate infrastructure conditions such as lack of system of drainage and polder, was another factor causing the high intensity of flood  in Samarinda City. Therefore, the relevant regulations development guidelines for Samarinda  City must consider all aspects of planning, in this case especially the important of a balance of cultivated land and protected areas or zones.Keywords: Changes in land use; intensity of puddles; Samarinda


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Dinesh Pal Mudaranthakam ◽  
Lisa M Harlan-Williams ◽  
Roy A Jensen ◽  
Hanluen Kuo ◽  
Vandita Garimella ◽  
...  

Abstract An increasingly diversified demographic landscape in rural and urban America warrants the attention of The University of Kansas Cancer Center (KU Cancer Center) researchers, clinicians, outreach staff and administrators as the institution assesses ways to reach its expansive, bi-state catchment area. Within the counties of the KU Cancer Center catchment area, patient level and public health data are available and categorized by varying geographic regional boundaries. Multiple data sources and different data collection processes complicate summarizing catchment area data. A curated data warehouse that retrieves and structures the data, with a common denominator, can support meaningful use of the data in a standard and consistent format. The KU Cancer Center built a data warehouse to Organize and Prioritize Trends to Inform KU Cancer Center (OPTIK), which functions to streamline the process of synthesizing data regarding Kansas and Missouri demographics, cancer risk factors and incidence and mortality rates. OPTIK standardizes these diverse data sources to enable analyses of the cancer burden at local, regional and national levels while upholding a strict standard of patient privacy. The OPTIK database enables researchers to use available data and create heat maps and other visualizations to aid in funding proposals, presentations and research activities. Furthermore, using knowledge provided by OPTIK, the KU Cancer Center is able to prioritize action items for research and outreach and more effectively communicate the impact of those efforts.


1999 ◽  
Vol 40 (2) ◽  
pp. 11-17 ◽  
Author(s):  
A. Tanik ◽  
B. Beler Baykal ◽  
I. E. Gonenc

Water is supplied in the Greater Istanbul Metropolitan Area from the surface water of six main reservoirs. The present land use in the catchment areas of the reservoirs indicates that the area devoted to agricultural activities and to forests and meadows varies between 73 and 97% and that only a minor percentage, 1-26%, is devoted to settlements and industries. In contrast to the land use profile, the current environmental evaluation of the catchment areas reveals that point sources dominate over diffuse sources. However, this trend is expected to be reversed in the near future, making diffuse sources and control of fertilizers and pesticides the most significant issue. Pollutant loads regarding pesticides and fertilizers are calculated from unit loads based on area. These pollutants are observed to have a negative impact on water quality in terms of eutrophication and toxicity. In this paper, the status of fertilizers and pesticides are addressed and some protective measures for reducing the impact of agricultural pollutants in the reservoirs are recommended.


2015 ◽  
Vol 16 (2) ◽  
pp. 55
Author(s):  
Budi Darmawan Supatmanto ◽  
Sri Malahayati Yusuf

Daerah Tangkapan waduk Jatiluhur berada diantara 107011'36” - 107032'36" BT and 6029'50" - 6040'45" LS di Jawa Barat, Indonesia. Area dengan luas 380 km2 merupakan 8% dari seluruh total area Hulu Sungai Citarum seluas 4500 km2. Fungsi dari daerah ini untuk memenuhi kebutuhan air untuk pertanian di Karawang dan Bekasi dan memenuhi kebutuhan air di Jakarta. Tujuan dari penelitian ini untuk meneliti dampak dari perubahan ik (Climate Changes) terhadap hasil hidrologi di daerah tangkapan. Perubahan iklim ditentukan oleh beberapa scenario perubahan iklim yang disiapkan sebagai input dalam SWAT hidrologi model. Simulasi dilakukan sesudah model dikalibrasi untuk mendapatkan parameter model yang sesuai dengan model hidrologi. Setelah itu model divalidasi untuk mengetahui bahwa model menggambarkan keadaan lapangan. hasil penelitian menunjukkan bahwa nilai-nilai limpasan dan hasil air yang bervariasi berdasarkan perubahan iklim. Oleh karena itu, perlu adanya untuk mempertimbangkan faktor-faktor perubahan iklim untuk mempelajari proses hidrologi di Daerah Tangkapan Air.Kata Kunci: SWAT, hidrologi, skenario perubahan iklim dan area tangkapan=Jatiluhur Reservoir Catchment Area is located between 107011'36” - 107032'36" BT and 6029'50" - 6040'45" LS in West Java, Indonesia. The catchment area embraces 380 km2, which is 8% of the total coverage area in the upstream of Citarum River with the total area of 4500 km2. The functions of this catchment are essential for meeting the needs of water for agriculture in Karawang and Bekasi area, and drinking water needs for Jakarta area. The purpose of this study was to investigate the impact of climate change on hydrology yield in the catchment. Changes in climate are discovered by several different climate changes scenarios, prepared as input for hydrological model SWAT. Simulation scenarios conducted after the model is calibrated in order to obtain model parameters that are sensitive to the hydrological response. Afterwards models are validated to find out that the model has described the state of the field. The result showed that the values of runoff and water yield are varies based on climate change. Therefore, there is a need to consider the factors of climate change in order to study hydrological process of a watershed.Keywords: SWAT, hydrology, climate changes scenarios and catchment areas.


2009 ◽  
Vol 6 (5) ◽  
pp. 6721-6758 ◽  
Author(s):  
O. V. Barron ◽  
D. W. Pollock ◽  
W. R. Dawes

Abstract. Contributing Catchment Area Analysis (CCAA) is a spatial analysis technique that allows estimation of the hydrological connectivity of relatively flat catchments and the effect of relief depressions on the catchment rainfall-runoff relationship for individual rainfall events. CCAA of the Southern River catchment, Western Australia, showed that catchment contributing area varied from less than 20% to more than 60% of total catchment area for various rainfall events. Such variability was attributed to a compensating effect of relief depressions. CCAA was further applied to analyse the impact of urbanisation on the catchment rainfall-runoff relationship. It was demonstrated that the change in land use resulted in much greater catchment volumetric runoff than expected simply as a result of the increase in proportion of impervious urban surfaces. As urbanisation leads to an increase in catchment hydrological connectivity, the catchment contributing area to the river flow also becomes greater. This effect was more evident for the most frequent rainfall events, when an increase in contributing area was responsible for a 30–100% increase in total volumetric runoff. The impact of urbanisation was greatest in sandy catchments, which were largely disconnected in the pre-development conditions.


2018 ◽  
Vol 181 ◽  
pp. 02001
Author(s):  
Okkie Putriani ◽  
Ibnu Fauzi

Optimizing the public transport and synergizing the land use can reduce the impact of urban development by attracting the development around the transit station. This situation encourages the accessibility of public transportation by creating conditions between passenger expectations realted to the concept Transit Oriented Development (TOD) between land use, mobility, and environment. This study was conducted by TOD with the area located in the center of local wisdom by cultural city, Yogyakarta Railway Station. The purpose of this study is to provide an alternative location where bus stops or Trans Jogja shelters are more easily accessible by users of rail services and facilitate the model’s transfer. The method of this research is descriptive quantitative. It explains the trans it function, needs and condition of Trans Jogja as the existing public transport and the accessibility of the bus stops. The conclusion is the recommendation for the bus stop location can be relocate near the dropout East and South area of the Railway Station


2020 ◽  
Vol 12 (6) ◽  
pp. 979 ◽  
Author(s):  
Magdalena Matysik ◽  
Damian Absalon ◽  
Michał Habel ◽  
Michael Maerker

Reservoirs are formed through the artificial damming of a river valley. Reservoirs, among others, capture polluted load transported by the tributaries in the form of suspended and dissolved sediments and substances. Therefore, reservoirs are treated in the European Union (EU) as “artificial” or “heavily modified” surface water bodies. The reservoirs’ pollutant load depends to a large extent on the degree of anthropogenic impact in the respective river catchment area. The purpose of this paper is to assess the mutual relation between the catchment area and the reservoirs. In particular, we focus on the effects of certain land use/land cover on reservoirs’ water quality. For this study, we selected twenty Polish reservoirs for an in-depth analysis using 2018 CORINE Land Cover data. This analysis allowed the identification of the main triggering factors in terms of water quality of the respective reservoirs. Moreover, our assessment clearly shows that water quality of the analysed dam reservoirs is directly affected by the composition of land use/land cover, both of the entire total reservoir catchment areas and the directly into the reservoir draining sub-catchment areas.


1999 ◽  
Vol 40 (2) ◽  
pp. 1-10 ◽  
Author(s):  
R. Meissner ◽  
J. Seeger ◽  
H. Rupp ◽  
H. Balla

To study and predict environmental impacts of land use changes on water quality we conducted different types of lysimeter experiments. All of them are linked to representative experimental catchment areas in the field. This allows the verification and extrapolation of lysimeter results. The objective of this paper is to discuss a strategy for using and scaling-up of lysimeter results to a field and catchment scale. It will be shown that the N-loss determined with lysimeters falls within the variation of N-balance based model calculations, and also within ground water recharge rates calculated with models commonly used in hydrology. Extrapolation of lysimeter data to a catchment with similar soils provides a reliable basis for estimating the N-leaching caused by a change in agricultural land use. On the basis of the N-loss from the soil and the N-load of the stream, the calculations show that an increase in the proportion of one year rotation fallow from 10 to 25% results in nearly a 10% increase in the N-load of the stream. However, from the point of view of protecting drinking water quality, rotation fallow for one year is not recommended because of the resulting intensified leaching of nitrates.


Author(s):  
Manuela Milan ◽  
Richard Bindler ◽  
Monica Tolotti

<p>Sediment Cladocera remains and geochemistry were analyzed at Lake Ledro, a small subalpine lake with a large catchment area located in northern Italy. The aim of the study was to investigate human, climate and hydrological impacts on the Cladocera community and on the geochemical components during the last few centuries. A sediment core was collected from the deepest point of Lake Ledro and radiometrically dated. Cladocera remains were analyzed to track the trophic lake evolution. The core bottom section revealed the dominance of Bosminidae in concomitance with nutrient pulses entering into the lake during major flood events. The abundance of species preferring cold water temperatures confirmed the deposition of this core section during the Little Ice Age. The flood event occurred in the first half of the 19<sup>th</sup> century produced a drastic increase in littoral species, due to the development of new habitats. The decrease in Cladocera densities during the following lake stage was followed by a rapid increase in planktonic species during the nutrient enrichment after the 1960s. Statistical analyses revealed a clear response of Cladocera community to climate variability during oligotrophic periods, while no relation to temperature changes was recorded during high nutrient levels. A preliminary study on Bosminidae and Daphnidae body size and appendages length was carried out to reconstruct major changes in the lake food web. Only <em>Bosminia</em> spp. revealed clear body size changes: minor shifts were recorded before the 1930s in relation to the low nutrient concentrations, while the major changes occurred during the 1980s were interpreted as related to the appearance of Cladocera invertebrate predators. Geochemical components were studied using X-ray fluorescence spectroscopy (XRF) analysis in order to recognize the impact of the large catchment area and from the lake-level regulations on the lake hydrology. Moreover the Si:Al ratios profile confirmed the increase in lake productivity after the 1960s. Although both Cladocera and geochemical analysis indicate major changes since the 1960s, they also revealed diverse responses to common external and local forcing, thus confirming the value of a multi-proxy approach for disentangling the lake responses to different environmental stressors. Moreover, it outlined the importance of larger catchment areas on small lakes as they are to a larger extent influenced by the modifications occurring in the drainage basin.</p>


Sign in / Sign up

Export Citation Format

Share Document