scholarly journals Building Integrated Shading and Building Applied Photovoltaic System Assessment in the Energy Performance and Thermal Comfort of Office Buildings

2018 ◽  
Vol 10 (12) ◽  
pp. 4670 ◽  
Author(s):  
Georgios Martinopoulos ◽  
Anna Serasidou ◽  
Panagiota Antoniadou ◽  
Agis M. Papadopoulos

Non-residential and more specifically office buildings are, nowadays, an integral part of the building stock and milestones of urban areas in most of the developed and developing countries all over the world. Compared to other building types, office buildings present some of the highest specific energy consumption rates. In the present study, a typical nine-story office is assessed for a number of different building integrated retrofitting measures. Measurements of indoor environmental conditions were used in order to validate the developed simulation model of the building in EnergyPlus. Then, a number of different building integration options for photovoltaic systems and shading options are examined, in order to evaluate the best option in terms of indoor air quality, thermal comfort and energy consumption. The amount of electricity produced can meet 65% of the building’s annual electricity requirements, while the shading options can reduce energy requirements by as much as 33%. Although this in not a value that can be dismissed easily, it becomes clear that further—and more deeply aiming—measures are needed, if the building is to achieve near zero energy status.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 25
Author(s):  
Benedetta Grassi ◽  
Edoardo Alessio Piana ◽  
Gian Paolo Beretta ◽  
Mariagrazia Pilotelli

To reduce energy consumption for space heating, a coordinated action on energy supply, building fabric and occupant behavior is required to realize sustainable improvements. A reduction in district heating supply temperature is an interesting option to allow the incorporation of renewable energy sources and reduce distribution losses, but its impact on the final users must be considered. This aspect is especially critical as most European countries feature an old building stock, with poor insulation and heating systems designed for high-temperature operation. In this study, a complete methodology is devised to evaluate the effect of district heating temperature reduction on the end users by modeling all the stages of the system, from the primary heat exchanger to the indoor environment. A dynamic energy performance engine, based on EN ISO 52016-1:2017 standard and completed with a heat exchanger model, is implemented, and its outputs are used to calculate thermal comfort indicators throughout the heating season. As a practical application, the method is used to evaluate different scenarios resulting from the reduction of primary supply temperature of a second-generation district heating network in Northern Italy. Several building typologies dating back to different periods are considered, in the conservative assumption of radiator heating. The results of the simulations show that the most severe discomfort situations are experienced in buildings built before 1990, but in recent buildings the amount of discomfort occurrences can be high because of the poor output of radiators when working at very low temperatures. Among the possible measures that could help the transition, actions on the primary side, on the installed power and on the building fabric are considered. The investigation method requires a limited amount of input data and is applicable to different scales, from the individual building to entire urban areas lined up for renovation.


2021 ◽  
Vol 13 (5) ◽  
pp. 2987
Author(s):  
Raúl Castaño-Rosa ◽  
Roberto Barrella ◽  
Carmen Sánchez-Guevara ◽  
Ricardo Barbosa ◽  
Ioanna Kyprianou ◽  
...  

The intensity and duration of hot weather and the number of extreme weather events, such as heatwaves, are increasing, leading to a growing need for space cooling energy demand. Together with the building stock’s low energy performance, this phenomenon may also increase households’ energy consumption. On the other hand, the low level of ownership of cooling equipment can cause low energy consumption, leading to a lack of indoor thermal comfort and several health-related problems, yet increasing the risk of energy poverty in summer. Understanding future temperature variations and the associated impacts on building cooling demand will allow mitigating future issues related to a warmer climate. In this respect, this paper analyses the effects of change in temperatures in the residential sector cooling demand in 2050 for a case study of nineteen cities across seven countries: Cyprus, Finland, Greece, Israel, Portugal, Slovakia, and Spain, by estimating cooling degree days and hours (CDD and CDH). CDD and CDH are calculated using both fixed and adaptive thermal comfort temperature thresholds for 2020 and 2050, understanding their strengths and weaknesses to assess the effects of warmer temperatures. Results suggest a noticeable average increase in CDD and CDH values, up to double, by using both thresholds for 2050, with a particular interest in northern countries where structural modifications in the building stock and occupants’ behavior should be anticipated. Furthermore, the use of the adaptive thermal comfort threshold shows that the projected temperature increases for 2050 might affect people’s capability to adapt their comfort band (i.e., indoor habitability) as temperatures would be higher than the maximum admissible values for people’s comfort and health.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3311
Author(s):  
Víctor Pérez-Andreu ◽  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Javier Cárcel-Carrasco

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2064
Author(s):  
Jin-Hee Kim ◽  
Seong-Koo Son ◽  
Gyeong-Seok Choi ◽  
Young-Tag Kim ◽  
Sung-Bum Kim ◽  
...  

Recently, there have been significant concerns regarding excessive energy use in office buildings with a large window-to-wall ratio (WWR) because of the curtain wall structure. However, prior research has confirmed that the impact of the window area on energy consumption varies depending on building size. A newly proposed window-to-floor ratio (WFR) correlates better with energy consumption in the building. In this paper, we derived the correlation by analyzing a simulation using EnergyPlus, and the results are as follows. In the case of small buildings, the results of this study showed that the WWR and energy requirement increase proportionally, and the smaller the size is, the higher the energy sensitivity will be. However, results also confirmed that this correlation was not established for buildings approximately 3600 m2 or larger. Nevertheless, from analyzing the correlation between the WFR and the energy requirements, it could be deduced that energy required increased proportionally when the WFR was 0.1 or higher. On the other hand, the correlation between WWR, U-value, solar heat gain coefficient (SHGC), and material property values of windows had little effect on energy when the WWR was 20%, and the highest effect was seen at a WWR of 100%. Further, with an SHGC below 0.3, the energy requirement decreased with an increasing WWR, regardless of U-value. In addition, we confirmed the need for in-depth research on the impact of the windows’ U-value, SHGC, and WWR, and this will be verified through future studies. In future studies on window performance, U-value, SHGC, visible light transmittance (VLT), wall U-value as sensitivity variables, and correlation between WFR and building size will be examined.


Author(s):  
Ruá María José ◽  
Huedo Patricia ◽  
Cabeza Manuel ◽  
Saez Beatriz ◽  
Civera Vicente

In the urban context, buildings play a key role as they are energy consumers. In well-established cities with a high percentage of aged building stock, the focus should lie on sensitive urban areas where the weakest population sectors and the worst physico-economic conditions are usually encountered. In this work, the energy refurbishment of social housing is proposed. A block of municipally owned buildings is selected as a case study to consider that public buildings play an exemplary role according to Directive 2012/27/EU. The group is formed by 12 buildings, which account for 120 dwellings.This study is grounded on two levels. First the urban level. The building is located in a prioritised urban Area of Rehabilitation, Renovation and Urban Regeneration (ARRU), according to the new local Land Plan. This area presents multidimensional vulnerability and considers urban, building, socio-demographic and socio-economic features. Second, the building presents very low energy performance. It was built in 1959 when a high demand of dwellings and the economic resources then available led to low-quality buildings that are far from meeting today’s standards.Some proposals are made, having in mind the specific features of the urban context. The energy refurbishment of the building is proposed, selecting the optimal solution, considering technical, environmental and economic criteria. The energy performance simulation shows a remarkable improvement of the energy performance, resulting in an improvement of the thermal comfort of the dwellers. Besides, a reduction in the energy consumption is reached, which would reduce the energy bills and, on the other hand, a reduction of the carbon emissions to the atmosphere, contributing to a better environment quality. Having in mind that the building is intended for social housing, energy poverty situations could be avoided, as dwellings are inhabited by low-income dwellers.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4326 ◽  
Author(s):  
Simplice Igor Noubissie Tientcheu ◽  
Shyama P. Chowdhury ◽  
Thomas O. Olwal

The increasing demand to reduce the high consumption of end-use energy in office buildings framed the objective of this work, which was to design an intelligent system management that could be utilized to minimize office buildings’ energy consumption from the national electricity grid. Heating, Ventilation and Air Conditioning (HVAC) and lighting are the two main consumers of electricity in office buildings. Advanced automation and control systems for buildings and their components have been developed by researchers to achieve low energy consumption in office buildings without considering integrating the load consumed and the Photovoltaic system (PV) input to the controller. This study investigated the use of PV to power the HVAC and lighting equipped with a suitable control strategy to improve energy saving within a building, especially in office buildings where there are reports of high misuse of electricity. The intelligent system was modelled using occupant activities, weather condition changes, load consumed and PV energy changes, as input to the control system of lighting and HVAC. The model was verified and tested using specialized simulation tools (Simulink®) and was subsequently used to investigate the impact of an integrated system on energy consumption, based on three scenarios. In addition, the direct impact on reduced energy cost was also analysed. The first scenario was tested in simulation of four offices building in a civil building in South Africa of a single occupant’s activities, weather conditions, temperature and the simulation resulted in savings of HVAC energy and lighting energy of 13% and 29%, respectively. In the second scenario, the four offices were tested in simulation due to the loads’ management plus temperature and occupancy and it resulted in a saving of 20% of HVAC energy and 29% of lighting electrical energy. The third scenario, which tested integrating PV energy (thus, the approach utilized) with the above-mentioned scenarios, resulted in, respectively, 64% and 73% of HVAC energy and lighting electrical energy saved. This saving was greater than that of the first two scenarios. The results of the system developed demonstrated that the loads’ control and the PV integration combined with the occupancy, weather and temperature control, could lead to a significant saving of energy within office buildings.


2016 ◽  
Vol 820 ◽  
pp. 159-164
Author(s):  
Kamil Binek ◽  
Juraj Žilinský

Nowadays, residential as well as office buildings are faced to high demands in terms of thermal comfort, which can be defined as a feeling of satisfaction with the thermal aspects of environment, in which the person does not feel hot or cold . This definition means, that the user does not wish hotter or colder environment. [1] This condition is essential to ensure both during winter and summer. Because the staying in a very warm room is uncomfortable, it is necessary to find a solution to cut off overheating of the building. In urban areas, dense development area and areas with lack of green, this temperature increases very quickly and you cannot absorb it. Because of this, it should be considered to design the correct orientation of the habitat of building. In this article we want to highlight the changes in air temperature during the day.


2018 ◽  
Vol 77 (9) ◽  
pp. 2242-2252 ◽  
Author(s):  
M. Vaccari ◽  
P. Foladori ◽  
S. Nembrini ◽  
F. Vitali

Abstract One of the largest surveys in Europe about energy consumption in Italian wastewater treatment plants (WWTPs) is presented, based on 241 WWTPs and a total population equivalent (PE) of more than 9,000,000 PE. The study contributes towards standardised resilient data and benchmarking and to identify potentials for energy savings. In the energy benchmark, three indicators were used: specific energy consumption expressed per population equivalents (kWh PE−1 year−1), per cubic meter (kWh/m3), and per unit of chemical oxygen demand (COD) removed (kWh/kgCOD). The indicator kWh/m3, even though widely applied, resulted in a biased benchmark, because highly influenced by stormwater and infiltrations. Plants with combined networks (often used in Europe) showed an apparent better energy performance. Conversely, the indicator kWh PE−1 year−1 resulted in a more meaningful definition of a benchmark. High energy efficiency was associated with: (i) large capacity of the plant, (ii) higher COD concentration in wastewater, (iii) separate sewer systems, (iv) capacity utilisation over 80%, and (v) high organic loads, but without overloading. The 25th percentile was proposed as a benchmark for four size classes: 23 kWh PE−1 y−1 for large plants > 100,000 PE; 42 kWh PE−1 y−1 for capacity 10,000 < PE < 100,000, 48 kWh PE−1 y−1 for capacity 2,000 < PE < 10,000 and 76 kWh PE−1 y−1 for small plants < 2,000 PE.


2020 ◽  
Vol 20 (1) ◽  
pp. 24-34
Author(s):  
Farheen Bano ◽  
Vandana Sehgal

In this study, the energy consumption of three government and three private office buildings in Lucknow was investigated, and the energy performance index (EPI) for each building was determined. The main purpose of this research was to assess the energy usage of the buildings and identify factors affecting the energy usage. An analysis was performed using data from an energy audit of government buildings, electricity bills of private office buildings, and an on-site visit to determine building envelope materials and its systems. The annual energy consumption of buildings has been evaluated through EPI. The EPI, measured in kilowatt hour per square meter per year, is annual energy consumption in kilowatt hours divided by the gross floor area of the building in square meters. In this study, the energy benchmark for day-time-use office buildings in composite climate specified by Energy Conservation Building Code (ECBC) has been compared with the energy consumption of the selected buildings. Consequently, it has been found that the average EPI of the selected buildings was close to the national energy benchmark indicated by ECBC. Moreover, factors causing inefficient energy consumption were determined, and solutions for consistent energy savings are suggested for buildings in composite climate.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Elahe Mirabi ◽  
Fatemeh Akrami Abarghuie

PurposeThe earth-sheltered building is an adaptive strategy reducing energy consumption as well as increasing thermal comfort of the residents. Although this idea historically implemented in the city of Yazd, Iran, its effects on thermal comfort have not been studied thoroughly. This paper aims to discuss and analyze energy performance, in terms of parameters such as orientation, underground depth, nocturnal ventilation and its subsequent effects on thermal comfort in earth-sheltered buildings in Yazd.Design/methodology/approachUsing EnergyPlus software, the obtained numeric data are precisely modeled, simulated and analyzed.FindingsResults show that there is a direct relationship between depth of construction and energy consumption savings. The more construction depth of earth-sheltered buildings, the more percentage of energy consumption savings, that is of a higher rate in comparison to the aboveground ones. However, in south orientation, energy saving significantly reduces from depth of 2 m downwards and the annual indoor temperature fluctuation decreases by 50%. This subsequently yields to experiencing indoor thermal comfort for a significant number of days throughout the year. Considering the effects of orientation factor, the south orientation regardless of the depth provides the most desired outcome regarding energy savings.Originality/valueSimulating the model generalized to the sunken courtyard can approve that the results of this research can be applied to the other models.


Sign in / Sign up

Export Citation Format

Share Document