scholarly journals Experimental Study on Static Mechanical Properties and Moisture Contents of Concrete Under Water Environment

2019 ◽  
Vol 11 (10) ◽  
pp. 2962 ◽  
Author(s):  
Guohui Zhang ◽  
Xiaohang Li ◽  
Zongli Li

This paper presents an experiment to investigate the influence of moisture on the static mechanical properties of concrete, and prediction equations for strength and fracture toughness of concrete at different strength grades, relative to water saturation, were established respectively. The research results show that all of the compressive strength, splitting tensile strength, and fracture toughness of concrete exhibit an approximately linearly decreasing trend with the increase in water saturation. For saturated concrete specimens with w/c 0.65, 0.55, 0.42 compared with dry ones, compressive strength decreases by 40.08%, 36.08%, and 33.73%, respectively, splitting tensile strength decreases by 45.39%, 42.61%, and 35.18%, respectively, and fracture toughness decreases by 57.31%, 49.92%, and 46.76%, respectively. The higher the water saturation of concrete, the larger the slope of the ascending part of the uniaxial compressive stress-strain curve, and the smaller the peak strain corresponding to the peak compressive stress, then in this case, both crack mouth opening displacement and loading point deflection corresponding to the critical load on three-point bending beam, decrease. Ingress of water causes the deformation capacity to decrease, and the toughness to weaken, which are unfavorable to the mechanical properties of concrete.

2019 ◽  
Vol 9 (16) ◽  
pp. 3367
Author(s):  
Park ◽  
Hou ◽  
Lee ◽  
Jeong

Mechanical properties of concrete with bamboo chips as a potential source of aggregates have been investigated in this study.The measurement of this investigation includes slump loss, compressive strength, strain at peak compressive stress, modulus of elasticity, compressive toughness ratio, and splitting tensile strength. A 0.5-cm-thick bamboo chip was cut to a 1 cm (width)× 1 cm (height) piece and then dried, wetted, and coated to minimize water absorption.The coarse aggregates in the concrete specimen were replaced with 10%, 20%, and 30% (by volume) of each bamboo chip. The testing results showed that the compressive strength and splitting tensile strength of concrete with bamboo chips decrease with increasing bamboo chip content (BCC). It is considered that the decrease of strengths is due to the weak bond between the mortar and the bamboo chip.


2021 ◽  
Vol 28 (1) ◽  
pp. 343-351
Author(s):  
Norbert Kępczak ◽  
Radosław Rosik ◽  
Mariusz Urbaniak

Abstract The paper presents an impact of the addition of industrial machining chips on the mechanical properties of polymer concrete. As an additional filler, six types of industrial waste machining chips were used: steel fine chips, steel medium chips, steel thick chips, aluminium fine chips, aluminium medium chips, and titanium fine chips. During the research, the influence of the addition of chips on the basic parameters of mechanical properties, i.e., tensile strength, compressive strength, splitting tensile strength, and Young’s modulus, was analyzed. On the basis of the obtained results, conclusions were drawn that the addition of chips from machining causes a decrease in the value of the mechanical properties parameters of the polymer concrete even by 30%. The mechanism of cracking of samples, which were subjected to durability tests, was also explored. In addition, it was found that some chip waste can be used as a substitute for natural fillers during preparation of a mineral cast composition without losing much of the strength parameters.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wasim Barham ◽  
Ammar AL-Maabreh ◽  
Omar Latayfeh

PurposeThe influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.Design/methodology/approachExperimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.FindingsExposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.Originality/valuePrevious research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.


2011 ◽  
Vol 477 ◽  
pp. 274-279 ◽  
Author(s):  
Yi Xu ◽  
Lin Hua Jiang ◽  
Hong Qiang Chu ◽  
Lei Chen

In this study, the effects of fiber types on the mechanical properties of lightweight aggregate concretes were investigated. Three types of fibers, namely, polypropylene fiber, steel fiber and water hyacinth (Eichhornia crassipes) fiber, and two types of lightweight aggregates, namely, expanded polystyrene and ceramsite were used. The compressive strength and splitting tensile strength of concretes were tested. The results show that both the compressive strength and the splitting tensile strength were improved by adding a reasonable volume of steel fiber and polypropylene fiber into LWAC. The addition of water hyacinth fiber had little effect on the compressive strength of LWAC, while a little increase was observed in the splitting tensile strength.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1985-1989
Author(s):  
Jia Bin Wang ◽  
Di Tao Niu ◽  
Rui Ma ◽  
Ze Long Mi

In order to investigate the carbonation resistance of shotcrete and the mechanical properties after carbonation, the accelerated carbonation test was carried out. The results indicate that the carbonation resistance of shotcrete is superior to that of normal concrete. With the increasing of carbonation depth, compressive strength and splitting tensile strength of shotcrete grew rapidly. The admixing of steel fiber can further improve the carbonation resistance, reduce the carbonation rate, and increase the splitting tensile strength of shotcrete greatly. Besides, based on analyzing the effects of construction technology and steel fiber of concrete for the carbonation resistance, a carbonation depth model for shotcrete was established. Key words: shotcrete; carbonation; steel fiber; mechanical properties


Author(s):  
Adda Hadj Mostefa ◽  
Merdaci Slimane

This work is carried out to investigate the performance of concrete reinforced with plastic fibers obtained locally (bottle waste as fiber). Bottle waste plastic was chosen because it is being thrown after single use and cause environmental problem. One way to recycle wasted bottles plastic is grinded into irregular fiber. Then, it was incorporate with the concrete and tests the performance of the concrete. The study was conducted using cylindrical and rectangular (cube) mold of concrete to investigate the performance of the concrete in term of mechanical properties. In this research, the mechanical properties that were measured are compressive strength, splitting tensile strength and flexural strength. The results revealed that the presence of plastic fiber in concrete will increase the concrete performance, as well as the concrete bond strength is improved and the cracks in the concrete decrease the use of fibers and reduce plastic waste.


2014 ◽  
Vol 935 ◽  
pp. 188-192 ◽  
Author(s):  
Sadaqat Ullah Khan ◽  
Muhd Fadhil Nuruddin ◽  
Nasir Shafiq ◽  
Tehmina Ayub

Locally produced metakaolin (MK) as the cement replacing material and PVA fibres has been used. The effect on workability and on the mechanical properties of concrete has been investigated. Total fifteen (15) mixes of concrete have been examined using MK 5 to 10% and PVA fibres of aspect ratio 45, 60, 90 and 120 with 1% volume fraction. Three (03) mixes without PVA fibre have been used as control mixes. For each mix, test for slump, cube compressive strength and splitting tensile strength has been performed. It has been found that MK and PVA fibres causes decrease in slump but use of MK and PVA fibres together improves the workability. The use of MK and PVA fibres has advantageous in increasing compressive strength and splitting tensile strength.


1994 ◽  
Vol 370 ◽  
Author(s):  
Manouchehr Hassanzadeh

AbstractThis study has determined the fracture mechanical properties of 9 types of rock, namely fine-, medium- and coarse-grained granites, gneiss, quartzite, diabase, gabbro, and fine- and coarse-grained limestones. Test results show among other things that quartzite has the highest compressive strength and fracture energy, while diabase has the highest splitting tensile strength and modulus of elasticity. Furthermore, the strength and fracture energy of the interfacial zone between the rocks and 6 different mortars have been determined. The results showed that, in this investigation, the mortar/rock interfaces are in most cases weaker than both mortars and rocks.


2018 ◽  
Author(s):  
erniati

Self Compacting Concrete (SCC) is one solution to get concrete construction which it has good resistance. Durability of concrete was obtained by the good concrete compaction to be done by a skilled workforce. However, one of the negligence that often occur in the field ie after casting they was ignoring curing of the hardening concrete. This study discusses the workability of fresh concrete and mechanical properties (compressive strength and splitting tensile strength) on SCC without curing. Testing of the concrete workability based on EFNARC standard. The mechanical properties test based on ASTM standards. The method Compressive strength test based on ASTM standards 39 / C 39M - 12a, whereas splitting tensile strength accordance standard ASTM C496 / C496M-11. The results of the study indicate that the SCC without curing effect on the reduction in compressive strength at ages 1, 3, 7, 28, and 90 days in a row at 4.11 MPa (16.1%); 4.90 MPa (13.9%); 6.64 MPa (13.1%); and 6, 72 MPa (12.75%). Splitting tensile strength decreased respectively by 0.1 MPa (3.25%); 0.26 MPa (7.99%); 0.4 MPa (9.52%); and 0.39 MPa (9.16%).


2021 ◽  
Vol 30 (3) ◽  
pp. 464-476
Author(s):  
Haider Owaid ◽  
Haider Al-Baghdadi ◽  
Muna Al-Rubaye

Large quantities of paper and wood waste are generated every day, the disposal of these waste products is a problem because it requires huge space for their disposal. The possibility of using these wastes can mitigate the environmental problems related to them. This study presents an investigation on the feasibility of inclusion of waste paper ash (WPA) or wood ash (WA) as replacement materials for fly ash (FA) class F in preparation geopolymer concrete (GC). The developed geopolymer concretes for this study were prepared at replacement ratios of FA by WPA or WA of 25, 50, 75 and 100% in addition to a control mix containing 100% of FA. Sodium hydroxide (NaOH) solutions and sodium silicate (Na2SiO3) are used as alkaline activators with 1M and 10M of sodium hydroxide solution.The geopolymer concretes have been evaluated with respect to the workability, the compressive strength, splitting tensile strength and flexural strength. The results indicated that there were no significant differences in the workability of the control GC mix and the developed GC mixes incorporating WPA or WA. Also, the results showed that, by incorporating of 25–50% PWA or 25% WA, the mechanical properties (compressive strength, splitting tensile strength and flexural strength) of GC mixes slightly decreased. While replacement with 75–100% WPA or with 50–100% WA has reduced these mechanical properties of GC mixes. As a result, there is a feasibility of partial replacement of FA by up to 50% WPA or 25% WA in preparation of the geopolymer concrete.


Sign in / Sign up

Export Citation Format

Share Document