scholarly journals Fire Spread in Insulation Materials in the Ceiling of a Piloti-Type Structure

2020 ◽  
Vol 34 (5) ◽  
pp. 18-26
Author(s):  
Hong-Sik Kim ◽  
Bu-Yeol Oh ◽  
Min-Young Park

In piloti-type structures, large-scale fires frequently occur because insulation materials in the ceiling are ignited. However, the spread of fire in these cases is not well known. Therefore, this study conducted small-scale (1.0 m × 1.0 m) tests and real-scale model tests. According to the results, we clarified the fire spread, temperature variation over time, and the effects of insulation materials in fire sites. For the small-scale tests, the internal structure of the ceiling was extruded polystyrene (XPS) + sheet molding compound (SMC), retardant expanded polystyrene (Retardant EPS) + sheet molding compound (SMC), and extruded polystyrene (XPS) + design metal ceiling (DMC). From the small-scale and large-scale tests that simulated a fire in a piloti-type structure, the flow of heat in the interior space and the cause of a large fire were identified. The tests were conducted with EPS+DMC, defined as the best-case scenario, and XPS+SMC, defined as the worst-case scenario during a fire accident. The results from the tests showed that combustion began when the insulation material was exposed to the fire source. Then, molten XPS fell onto the SMC, establishing a new fire source that destroyed the ceiling material, leading to increased combustion due to the inflow of oxygen.

2019 ◽  
Vol 11 (12) ◽  
pp. 3389
Author(s):  
Heong-Won Suh ◽  
Su-Min Im ◽  
Tae-Hoon Park ◽  
Hyung-Jun Kim ◽  
Hong-Sik Kim ◽  
...  

Large-scale fires mainly due to the ignition of thermal insulation materials in the ceiling of piloti-type structures are becoming frequent. However, the fire spread in these cases is not well understood. Herein we performed small-scale and real-scale model tests, and numerical simulations using a fire dynamics simulator (FDS). The experimental and FDS results were compared to elucidate fire spread and effects of thermal insulation materials on it. Comparison of real-scale fire test and FDS results revealed that extruded polystyrene (XPS) thermal insulation material generated additional ignition sources above the ceiling materials upon melting and propagated and sustained the fire. Deformation of these materials during fire test generated gaps, and combustible gases leaked out to cause fire spread. When the ceiling materials collapsed, air flew in through the gaps, leading to flashover that rapidly increased fire intensity and degree of spread. Although the variations of temperatures in real-scale fire test and FDS analysis were approximately similar, melting of XPS and generation of ignition sources could not be reproduced using FDS. Thus, artificial settings that increase the size and intensity of ignition sources at the appropriate moment in FDS were needed to achieve results comparable to those recorded by heat detectors in real-scale fire tests.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


2014 ◽  
Vol 11 (6) ◽  
pp. 1449-1459 ◽  
Author(s):  
I. N. Fletcher ◽  
L. E. O. C. Aragão ◽  
A. Lima ◽  
Y. Shimabukuro ◽  
P. Friedlingstein

Abstract. Current methods for modelling burnt area in dynamic global vegetation models (DGVMs) involve complex fire spread calculations, which rely on many inputs, including fuel characteristics, wind speed and countless parameters. They are therefore susceptible to large uncertainties through error propagation, but undeniably useful for modelling specific, small-scale burns. Using observed fractal distributions of fire scars in Brazilian Amazonia in 2005, we propose an alternative burnt area model for tropical forests, with fire counts as sole input and few parameters. This model is intended for predicting large-scale burnt area rather than looking at individual fire events. A simple parameterization of a tapered fractal distribution is calibrated at multiple spatial resolutions using a satellite-derived burnt area map. The model is capable of accurately reproducing the total area burnt (16 387 km2) and its spatial distribution. When tested pan-tropically using the MODIS MCD14ML active fire product, the model accurately predicts temporal and spatial fire trends, but the magnitude of the differences between these estimates and the GFED3.1 burnt area products varies per continent.


2015 ◽  
Vol 2 (2) ◽  
pp. 513-536 ◽  
Author(s):  
I. Grooms ◽  
Y. Lee

Abstract. Superparameterization (SP) is a multiscale computational approach wherein a large scale atmosphere or ocean model is coupled to an array of simulations of small scale dynamics on periodic domains embedded into the computational grid of the large scale model. SP has been successfully developed in global atmosphere and climate models, and is a promising approach for new applications. The authors develop a 3D-Var variational data assimilation framework for use with SP; the relatively low cost and simplicity of 3D-Var in comparison with ensemble approaches makes it a natural fit for relatively expensive multiscale SP models. To demonstrate the assimilation framework in a simple model, the authors develop a new system of ordinary differential equations similar to the two-scale Lorenz-'96 model. The system has one set of variables denoted {Yi}, with large and small scale parts, and the SP approximation to the system is straightforward. With the new assimilation framework the SP model approximates the large scale dynamics of the true system accurately.


Author(s):  
Hiroaki Takegami ◽  
Atsuhiko Terada ◽  
Kaoru Onuki ◽  
Ryutaro Hino

The Japan Atomic Energy Agency has been conducting R&D on thermochemical water-splitting Iodine-Sulfur (IS) process for hydrogen production to meet massive demand in the future hydrogen economy. A concept of sulfuric acid decomposer was developed featuring a heat exchanger block made of SiC. Recent activity has focused on the reliability assessment of SiC block. Although knowing the strength of SiC block is important for the reliability assessment, it is difficult to evaluate a large-scale ceramics structure without destructive test. In this study, a novel approach for strength estimation of SiC structure was proposed. Since accurate strength estimation of individual ceramics structure is difficult, a prediction method of minimum strength in the structure of the same design was proposed based on effective volume theory and optimized Weibull modulus. Optimum value of the Weibull modulus was determined for estimating the lowest strength. The strength estimation line was developed by using the determined modulus. The validity of the line was verified by destructive test of SiC block model, which is small-scale model of the SiC block. The fracture strength of small-scale model satisfied the predicted strength.


2006 ◽  
Vol 41 (1) ◽  
pp. 24-36 ◽  
Author(s):  
Karl-Erich Lindenschmidt ◽  
René Wodrich ◽  
Cornelia Hesse

Abstract A hypothesis stating that more complex descriptions of processes in models simulate reality better (less error) but with more unreliable predictability (more sensitivity) is tested using a river water quality model. This hypothesis was extended stating that applying the model on a domain of smaller scale requires greater complexity to capture the same accuracy as in large-scale model applications which, however, leads to increased model sensitivity. The sediment and pollutant transport model TOXI, a module in the WASP5 package, was applied to two case studies of different scale: a 90-km course of the 5th order (sensu Strahler 1952) lower Saale river, Germany (large scale), and the lock-and-weir system at Calbe (small scale) situated on the same river course. A sensitivity analysis of several parameters relating to the physical and chemical transport processes of suspended solids, chloride, arsenic, iron and zinc shows that the coefficient, which partitions the total heavy metal mass into its dissolved and sorbed fraction, is a very sensitive parameter. Hence, the complexity of the sorptive process was varied to test the hypotheses.


Author(s):  
Zhongheng Guo ◽  
Lingyu Sun ◽  
Taikun Wang ◽  
Junmin Du ◽  
Han Li ◽  
...  

At the conceptual design phase of a large-scale underwater structure, a small-scale model in a water tank is often used for the experimental verification of kinematic principles and structural safety. However, a general scaling law for structure-fluid interaction (FSI) problems has not been established. In the present paper, the scaling laws for three typical FSI problems under the water, rigid body moves at a given kinematic equation or is driven by time-dependent fluids with given initial condition, as well as elastic-plastic body moves and then deforms subject to underwater impact loads, are investigated, respectively. First, the power laws for these three types of FSI problems were derived by dimensional analysis method. Then, the laws for the first two types were verified by numerical simulation. In addition, a multipurpose small-scale water sink test device was developed for numerical model updating. For the third type of problem, the dimensional analysis is no longer suitable due to its limitation on identifying the fluid pressure and structural stress, a simulation-based procedure for dynamics evaluation of large-scale structure was provided. The results show that, for some complex FSI problems, if small-scale prototype is tested safely, it doesn’t mean the full-scale product is also safe if both their pressure and stress are the main concerns, it needs further demonstration, at least by numerical simulation.


1976 ◽  
Vol 1 (15) ◽  
pp. 147 ◽  
Author(s):  
Charles K. Sollitt ◽  
Donald H. Debok

Large scale model studies reveal that Reynolds scaling can affect the apparent stability and wave modifying properties of layered breakwater structures. Results of a study for a breakwater configuration designed to protect offshore power and port facilities in water depths to 60 feet are presented and discussed. The armor layer of this structure is formed from quarried rock of irregular rectangular parallelepiped shape, individually placed perpendicular to 1:2 seaward slope and crest. The resulting armor layer is relatively smooth, densely packed and very stable. Model studies of similar configurations were studied at 1:10, 1:20 and 1:100 scale ratios. Stability, runup, rundown and reflection were measured for a variety of water depths, wave heights and periods. Analysis of the large scale test results establish that the placed stone armor is approximately as stable as dolos armor units. Runup, rundown and reflection respond similar to rough, impermeable slopes. Comparison of large and small scale results demonstrate that relative increases in drag forces at lower Reynolds numbers decrease stability and runup in small scale models.


2021 ◽  
Author(s):  
Xingyu Zhang ◽  
◽  
Matteo Ciantia ◽  
Jonathan Knappett ◽  
Anthony Leung ◽  
...  

When testing an 1:N geotechnical structure in the centrifuge, it is desirable to choose a large scale factor (N) that can fit the small-scale model in a model container and avoid unwanted boundary effects, however, this in turn may cause scale effects when the structure is overscaled. This is more significant when it comes to small-scale modelling of sinker root-soil interaction, where root-particle size ratio is much lower. In this study the Distinct Element Method (DEM) is used to investigate this problem. The sinker root of a model root system under axial loading was analysed, with both upward and downward behaviour compared with the Finite Element Method (FEM), where the soil is modelled as a continuum in which case particle-size effects are not taken into consideration. Based on the scaling law, with the same prototype scale and particle size distribution, different scale factors/g-levels were applied to quantify effects of the ratio of root diameter (𝑑𝑟) to mean particle size (𝐷50) on the root rootsoil interaction.


2010 ◽  
Vol 133-134 ◽  
pp. 497-502 ◽  
Author(s):  
Alvaro Quinonez ◽  
Jennifer Zessin ◽  
Aissata Nutzel ◽  
John Ochsendorf

Experiments may be used to verify numerical and analytical results, but large-scale model testing is associated with high costs and lengthy set-up times. In contrast, small-scale model testing is inexpensive, non-invasive, and easy to replicate over several trials. This paper proposes a new method of masonry model generation using three-dimensional printing technology. Small-scale models are created as an assemblage of individual blocks representing the original structure’s geometry and stereotomy. Two model domes are tested to collapse due to outward support displacements, and experimental data from these tests is compared with analytical predictions. Results of these experiments provide a strong understanding of the mechanics of actual masonry structures and can be used to demonstrate the structural capacity of masonry structures with extensive cracking. Challenges for this work, such as imperfections in the model geometry and construction problems, are also addressed. This experimental method can provide a low-cost alternative for the collapse analysis of complex masonry structures, the safety of which depends primarily on stability rather than material strength.


Sign in / Sign up

Export Citation Format

Share Document