scholarly journals Entropy-Based Face Recognition and Spoof Detection for Security Applications

2019 ◽  
Vol 12 (1) ◽  
pp. 85 ◽  
Author(s):  
Francisco A. Pujol ◽  
María José Pujol ◽  
Carlos Rizo-Maestre ◽  
Mar Pujol

Nowadays, cyber attacks are becoming an extremely serious issue, which is particularly important to prevent in a smart city context. Among cyber attacks, spoofing is an action that is increasingly common in many areas, such as emails, geolocation services or social networks. Identity spoofing is defined as the action by which a person impersonates a third party to carry out a series of illegal activities such as committing fraud, cyberbullying, sextorsion, etc. In this work, a face recognition system is proposed, with an application to the spoofing prevention. The method is based on the Histogram of Oriented Gradients (HOG) descriptor. Since different face regions do not have the same information for the recognition process, introducing entropy would quantify the importance of each face region in the descriptor. Therefore, entropy is added to increase the robustness of the algorithm. Regarding face recognition, our approach has been tested on three well-known databases (ORL, FERET and LFW) and the experiments show that adding entropy information improves the recognition rate significantly, with an increase over 40% in some of the considered databases. Spoofing tests has been implemented on CASIA FASD and MIFS databases, having obtained again better results than similar texture descriptors approaches.

2012 ◽  
Vol 241-244 ◽  
pp. 1705-1709
Author(s):  
Ching Tang Hsieh ◽  
Chia Shing Hu

In this paper, a robust and efficient face recognition system based on luminance distribution by using maximum likelihood estimation is proposed. The distribution of luminance components of the face region is acquired and applied to maximum likelihood test for face matching. The experimental results showed that the proposed method has a high recognition rate and requires less computation time.


Now a days one of the critical factors that affects the recognition performance of any face recognition system is partial occlusion. The paper addresses face recognition in the presence of sunglasses and scarf occlusion. The face recognition approach that we proposed, detects the face region that is not occluded and then uses this region to obtain the face recognition. To segment the occluded and non-occluded parts, adaptive Fuzzy C-Means Clustering is used and for recognition Minimum Cost Sub-Block Matching Distance(MCSBMD) are used. The input face image is divided in to number of sub blocks and each block is checked if occlusion present or not and only from non-occluded blocks MWLBP features are extracted and are used for classification. Experiment results shows our method is giving promising results when compared to the other conventional techniques.


2018 ◽  
Vol 7 (2.17) ◽  
pp. 85
Author(s):  
K Raju ◽  
Dr Y.Srinivasa Rao

Face Recognition is the ability to find and detect a person by their facial attributes. Face is a multi dimensional and thus requires a considerable measure of scientific calculations. Face recognition system is very useful and important for security, law authorization applications, client confirmation and so forth. Hence there is a need for an efficient and cost effective system. There are numerous techniques that are as of now proposed with low Recognition rate and high false alarm rate. Hence the major task of the research is to develop face recognition system with improved accuracy and improved recognition time. Our objective is to implementing Raspberry Pi based face recognition system using conventional face detection and recognition techniques such as A Haar cascade classifier is trained for detection and Local Binary Pattern (LBP) as a feature extraction technique. With the use of the Raspberry Pi kit, we go for influencing the framework with less cost and simple to use, with high performance. 


2013 ◽  
Vol 10 (2) ◽  
pp. 1330-1338
Author(s):  
Vasudha S ◽  
Neelamma K. Patil ◽  
Dr. Lokesh R. Boregowda

Face recognition is one of the important applications of image processing and it has gained significant attention in wide range of law enforcement areas in which security is of prime concern. Although the existing automated machine recognition systems have certain level of maturity but their accomplishments are limited due to real time challenges. Face recognition systems are impressively sensitive to appearance variations due to lighting, expression and aging. The major metric in modeling the performance of a face recognition system is its accuracy of recognition. This paper proposes a novel method which improves the recognition accuracy as well as avoids face datasets being tampered through image splicing techniques. Proposed method uses a non-statistical procedure which avoids training step for face samples thereby avoiding generalizability problem which is caused due to statistical learning procedure. This proposed method performs well with images with partial occlusion and images with lighting variations as the local patch of the face is divided into several different patches. The performance improvement is shown considerably high in terms of recognition rate and storage space by storing train images in compressed domain and selecting significant features from superset of feature vectors for actual recognition.


Author(s):  
Fatma Zohra Chelali ◽  
Amar Djeradi

Proposed is an efficient face recognition algorithm using the discrete cosine transform DCT Technique for reducing dimensionality and image parameterization. These DCT coefficients are examined by a MLP (Multi-Layer Perceptron) and radial basis function RBF neural networks. Their purpose is to present a face recognition system that is a combination of discrete cosine transform (DCT) algorithm with a MLP and RBF neural networks. Neural networks have been widely applied in pattern recognition for the reason that neural-networks-based classifiers can incorporate both statistical and structural information and achieve better performance than the simple minimum distance classifiers. The authors demonstrate experimentally that when DCT coefficients are fed into a back propagation neural network for classification, a high recognition rate can be achieved by using a very small proportion of transform coefficients. Comparison with other statistical methods like Principal component Analysis (PCA) and Linear Discriminant Analysis (LDA) is presented. Their face recognition system is tested on the computer vision science research projects and the ORL database.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Fatma Zohra Chelali ◽  
Amar Djeradi

Face recognition has received a great attention from a lot of researchers in computer vision, pattern recognition, and human machine computer interfaces in recent years. Designing a face recognition system is a complex task due to the wide variety of illumination, pose, and facial expression. A lot of approaches have been developed to find the optimal space in which face feature descriptors are well distinguished and separated. Face representation using Gabor features and discrete wavelet has attracted considerable attention in computer vision and image processing. We describe in this paper a face recognition system using artificial neural networks like multilayer perceptron (MLP) and radial basis function (RBF) where Gabor and discrete wavelet based feature extraction methods are proposed for the extraction of features from facial images using two facial databases: the ORL and computer vision. Good recognition rate was obtained using Gabor and DWT parameterization with MLP classifier applied for computer vision dataset.


2014 ◽  
Vol 926-930 ◽  
pp. 3598-3603
Author(s):  
Xiao Xiong ◽  
Guo Fa Hao ◽  
Peng Zhong

Face recognition belongs to the important content of the biometric identification, which is a important method in research of image processing and pattern recognition. It can effectively overcome the traditional authentication defects Through the facial recognition technology. At present, face recognition under ideal state research made some achievements, but the changes in light, shade, expression, posture changes the interference factors such as face recognition is still exist many problems. For this, put forward the integration of global and local features of face recognition research. Practice has proved that through the effective integration of global features and local characteristics, build based on global features and local features fusion face recognition system, can improve the recognition rate of face recognition, face recognition application benefit.


2013 ◽  
Vol 284-287 ◽  
pp. 2950-2954
Author(s):  
Ching Tang Hsieh ◽  
Chia Shing Hu ◽  
Meng Shian Shih

Conventional 2D face recognition methods often struggle when a subject's head is turned even slightly to the side. In this study, a face recognition system based on 3D head modeling that is able to tolerate facial rotation angles was constructed by leveraging the Open source graphic library (OpenGL) framework. To minimize the extensive angle searching time that often occurs in conventional 3D modeling, Particle Swarm Optimization (PSO) was used to determine the correct facial angle in 3D. This reduced the angle computation time to 6 seconds, which is significantly faster than other methods. Experimental results showed that successful ID recognition can be achieved with a high recognition rate of 90%.


Author(s):  
Edy Winarno ◽  
Agus Harjoko ◽  
Aniati Murni Arymurthy ◽  
Edi Winarko

<p>The main problem in face recognition system based on half-face pattern is how to anticipate poses and illuminance variations to improve recognition rate. To solve this problem, we can use two lenses on stereo vision camera in face recognition system. Stereo vision camera has left and right lenses that can be used to produce a 2D image of each lens. Stereo vision camera in face recognition has capability to produce two of 2D face images with a different angle. Both angle of the face image will produce a detailed image of the face and better lighting levels on each of the left and right lenses. In this study, we proposed a face recognition technique, using 2 lens on a stereo vision camera namely symmetrical half-join. Symmetrical half-join is a method of normalizing the image of the face detection on each of the left and right lenses in stereo vision camera, then cropping and merging at each image. Tests on face recognition rate based on the variety of poses and variations in illumination shows that the symmetrical half-join method is able to provide a high accuracy of face recognition and can anticipate variations in given pose and illumination variations. The proposed model is able to produce 86% -97% recognition rate on a variety of poses and variations in angles between 0 °- 22.5 °. The variation of illuminance measured using a lux meter can result in 90% -100% recognition rate for the category of at least dim lighting levels (above 10 lux).</p>


2017 ◽  
Vol 13 (1) ◽  
pp. 104-113
Author(s):  
Yaqeen Mezaal

Face recognition technique is an automatic approach for recognizing a person from digital images using mathematical interpolation as matrices for these images. It can be adopted to realize facial appearance in the situations of different poses, facial expressions, ageing and other changes. This paper presents efficient face recognition model based on the integration of image preprocessing, Co-occurrence Matrix of Local Average Binary Pattern (CMLABP) and Principle Component Analysis (PCA) methods respectively. The proposed model can be used to compare the input image with existing database images in order to display or record the citizen information such as name, surname, birth date, etc. The recognition rate of the model is better than 99%. Accordingly, the proposed face recognition system is functional for criminal investigations. Furthermore, it has been compared with other reported works in the literature using diverse databases and training images.


Sign in / Sign up

Export Citation Format

Share Document