scholarly journals Application of Bolter Miner Rapid Excavation Technology in Deep Underground Roadway in Inner Mongolia: A Case Study

2020 ◽  
Vol 12 (7) ◽  
pp. 2588
Author(s):  
Peng Ma ◽  
Deyu Qian ◽  
Nong Zhang ◽  
Hideki Shimada ◽  
Dongjiang Pan ◽  
...  

Rapid excavation could mitigate the imbalance relationship between excavation speed and production needs that plays a pivotal role in the sustainable development of large underground coal mines. This paper provides a case study on Bolter Miner Rapid Excavation Technology (BMRET) in Menkeqing Coal Mine, which has a high production of 13 million tons per year in Inner Mongolia. The temporal characterization of excavation procedures is analyzed in detail based on field monitoring data. The improvement of the roadway driving process and efficiency under a new support design is introduced, and corresponding evaluation methods, including parallel operation index ( P x ) and unit drilling-hole index ( D x ), are proposed for BMRET. A field application is conducted to verify the effectiveness of the improved BMRET, which fully considers the structure characteristic of the bolter miner machine. The performance and reliability of this new support scheme are monitored in terms of roadway convergence and axial force of cable through professional instrumentation programs in the field. The results show that the average excavation speed of the BMRET is 36.15 m/day (1080 m/month), an increase of 99.72% compared with the original excavation technology, which indicates that the BMRET could provide high efficiency in roadway excavation and effectively control the stability of deep roadways. It is pivotal to apply BMRET to ensure sustainable and highly efficient coal production. This case study provides reference and guidance for rapid excavation of deep underground roadways with similar geological conditions.

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Xiuling Wang ◽  
Jinxing Lai ◽  
Rodney Sheldon Garnes ◽  
Yanbin Luo

Tunnelling or undertaking below-ground construction in squeezing ground can always present many engineering surprises, in which this complicated geology bring a series of tunnelling difficulties. Obviously, if the major affecting factors and mechanism of the structure damage in these complicated geological conditions are determined accurately, fewer problems will be faced during the tunnel excavation. For this study, reference is made to four tunnel cases located in the Qingling-Daba mountainous squeezing area that are dominated by a strong tectonic uplift and diversified geological structures. This paper establishes a strong support system suitable for a squeezing tunnel for the purpose of addressing problems exhibited in the extreme deformation of rock mass, structure crack, or even failure during excavation phase. This support system contains a number of temporary support measures used for ensuring the stability of tunnel face during tunnelling. The final support system was constructed, including some key techniques such as the employment of the foot reinforcement bolt (FRB), an overall strong support measure, and more reserved deformation. Results in this case study showed significant effectiveness of the support systems along with a safe and efficient construction process. The tunnel support system proposed in this paper can be helpful to support design and provide sufficient support and arrangement before tunnel construction in squeezing ground.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3767
Author(s):  
Kai Wang ◽  
Lianguo Wang ◽  
Bo Ren

This paper introduces a case study on the failure mechanism and support design of a roadway tunnel in the fault fracture zone of the 106 mining area in the Yuandian no.2 coal mine. Based on the on-site geological conditions (in-situ stress test, borehole television imaging, and lithological analysis), the failure mechanism of the roadway tunnel in the fault fracture zone was studied. The test results showed that the high tectonic stress, fractured rock, and poor lithology are the primary reasons for the roadway instability. According to the support principles of grouting reinforcement, pre-reinforced support, and rational support range, a new type of combined support technology was proposed, including advanced grouting, grouting bolts, and grouting anchor cables. A 100 m roadway section was selected for field testing using the new support scheme, and detailed deformation monitoring was performed. Monitoring results showed that the roadway deformation under the new support was significantly reduced. During the roadway excavation process, no roof collapse phenomenon occurred, and the safety of roadway excavation was ensured. This successful case provides an important reference for similar roadway projects in the fault fracture zone.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3716
Author(s):  
Francesco Causone ◽  
Rossano Scoccia ◽  
Martina Pelle ◽  
Paola Colombo ◽  
Mario Motta ◽  
...  

Cities and nations worldwide are pledging to energy and carbon neutral objectives that imply a huge contribution from buildings. High-performance targets, either zero energy or zero carbon, are typically difficult to be reached by single buildings, but groups of properly-managed buildings might reach these ambitious goals. For this purpose we need tools and experiences to model, monitor, manage and optimize buildings and their neighborhood-level systems. The paper describes the activities pursued for the deployment of an advanced energy management system for a multi-carrier energy grid of an existing neighborhood in the area of Milan. The activities included: (i) development of a detailed monitoring plan, (ii) deployment of the monitoring plan, (iii) development of a virtual model of the neighborhood and simulation of the energy performance. Comparisons against early-stage energy monitoring data proved promising and the generation system showed high efficiency (EER equal to 5.84), to be further exploited.


2021 ◽  
Vol 8 (1) ◽  
pp. 1869367
Author(s):  
Sylvanus Sebbeh-Newton ◽  
Shaib Abdulazeez Shehu ◽  
Prosper Ayawah ◽  
Azupuri A. Kaba ◽  
Hareyani Zabidi

2020 ◽  
Vol 12 (1) ◽  
pp. 1094-1104
Author(s):  
Nima Dastanboo ◽  
Xiao-Qing Li ◽  
Hamed Gharibdoost

AbstractIn deep tunnels with hydro-geological conditions, it is paramount to investigate the geological structure of the region before excavating a tunnel; otherwise, unanticipated accidents may cause serious damage and delay the project. The purpose of this study is to investigate the geological properties ahead of a tunnel face using electrical resistivity tomography (ERT) and tunnel seismic prediction (TSP) methods. During construction of the Nosoud Tunnel located in western Iran, ERT and TSP 303 methods were employed to predict geological conditions ahead of the tunnel face. In this article, the results of applying these methods are discussed. In this case, we have compared the results of the ERT method with those of the TSP 303 method. This work utilizes seismic methods and electrical tomography as two geophysical techniques are able to detect rock properties ahead of a tunnel face. This study shows that although the results of these two methods are in good agreement with each other, the results of TSP 303 are more accurate and higher quality. Also, we believe that using another geophysical method, in addition to TSP 303, could be helpful in making decisions in support of excavation, especially in complicated geological conditions.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2205
Author(s):  
Han Liang ◽  
Jun Han ◽  
Chen Cao ◽  
Shuangwen Ma

Thin spray-on liner (TSL) is a surface protection technology used by spraying a polymer film, which is widely used for mine airtightness and waterproofing. A reinforcing TSL can replace steel mesh, which is a new method for roadway support. This paper reviews the development of a reinforcing TSL. Considering the deterioration of geological conditions in deep underground mining and the demand for reinforcing automation, two kinds of polymeric reinforcing TSL (RPTSL) materials are developed. The mechanical characteristics of the new TSL materials are studied experimentally. Results show that the average compressive strength, tensile strength, cohesion, and internal friction angle of the two TSL materials are 52 and 32 MPa, 12 and 8 MPa, 6.2 and 17.2 MPa, and 33.6° and 25.9°, respectively. The bonding strength between the two materials and coal is greater than the tensile strength of coal itself, and the mechanical properties of the material for comparison are lower than those of both materials. Based on the TSL support mechanism, we examine the application of the two TSL materials to the mining environment and compare the mechanical properties of polymer materials and cement-based materials. The advantages of polymer materials include versatile mechanical properties, good adhesion, and high early strength. This study provides a new support material to replace steel mesh for roadway surface support, which satisfies the needs of different surface support designs under complex geological conditions, and promotes the automation of roadway support.


2019 ◽  
Vol 11 (21) ◽  
pp. 6041 ◽  
Author(s):  
Zhang ◽  
Li ◽  
Buyantuev ◽  
Bao ◽  
Zhang

Ecosystem services management should often expect to deal with non-linearities due to trade-offs and synergies between ecosystem services (ES). Therefore, it is important to analyze long-term trends in ES development and utilization to understand their responses to climate change and intensification of human activities. In this paper, the region of Uxin in Inner Mongolia, China, was chosen as a case study area to describe the spatial distribution and trends of 5 ES indicators. Changes in relationships between ES and driving forces of dynamics of ES relationships were analyzed for the period 1979–2016 using a stepwise regression. We found that: the magnitude and directions in ES relationships changed during this extended period; those changes are influenced by climate factors, land use change, technological progress, and population growth.


Sign in / Sign up

Export Citation Format

Share Document