scholarly journals Effect of Substrate Concentration on Photo-Fermentation Bio-Hydrogen Production Process from Starch-Rich Agricultural Leftovers under Oscillation

2020 ◽  
Vol 12 (7) ◽  
pp. 2700 ◽  
Author(s):  
Haorui Zhang ◽  
Jiaolin Li ◽  
Quanguo Zhang ◽  
Shengnan Zhu ◽  
Shuai Yang ◽  
...  

China has plenty of starch-rich agricultural leftovers, which can be degraded and further utilized for biogas production. Potato, which has more and more cultivated areas, was taken as a substrate. The pH, OD540, biogas yield, hydrogen yield, biogas production rate, and hydrogen production rate were determined to evaluate the effect of substrate concentration on the photo-fermentation bio-hydrogen production process under an oscillation condition. Results showed that the photo-fermentation period was extended to 264 h under oscillation, which was two times longer than the static condition. It was found that 8 g per 100 mL fermentation broth was the most suitable substrate concentration under oscillation, the cumulative hydrogen yield was 510 mL VS−1, and the hydrogen content was 38.36%.

2020 ◽  
Vol 14 (2) ◽  
pp. 303-307
Author(s):  
Zhiping Zhang ◽  
Yameng Li ◽  
Chenyang Wang ◽  
Bing Hu ◽  
Jianjun Hu ◽  
...  

Food waste is rich in starch or cellulose, which can be utilized as carbon source for fermentation. Hence, in this paper, different food wastes (vegetable, rice, corn, potato) were taken as substrate to evaluate their hydrogen yield potential. The characteristics of fermentation broth, cumulative hydrogen yield, and hydrogen production rate were investigated in the photo-fermentation bio-hydrogen production process. Modified Gompertz Model was utilized to deal with experiment data. Results showed that food waste can be effectively utilized by photosynthetic bacteria. Waste rice was determined to have the best hydrogen production capacity with hydrogen yield of 696 mL, and the maximum hydrogen production rate of 17.71 mL/h, the average hydrogen concentration was 55.78%.


2020 ◽  
Vol 18 (4) ◽  
pp. 561-564
Author(s):  
Anja Antanasković ◽  
Maja Bulatović ◽  
Marica Rakin ◽  
Zorica Lopičić ◽  
Tatjana Šoštarić ◽  
...  

Anaerobic digestion is a natural process of organic material degradation by different kinds of microorganisms in the absence of oxygen. This process is used for industrial purpose to manage waste streams or to produce biogas. It gives a major contribution in reduction of harmful effects of organic waste disposal to the environment. The aim of agricultural waste pretreatment in biogas production is to decrease the retention time, improve utilization of raw material and improve the overall productivity and energy efficiency of the production process. In this paper the effects of combined chemical and mechanical pretreatment of corn straw biomass on biogas yield during anaerobic digestion of the feedstock were analyzed. The impact of pretreatment and process parameters in biogas production was analyzed by process simulation using the software SuperPro Designer. Using this tool, it was shown that alkaline pretreatment leads to an decrease of degradation time along with an increase in biogas yield.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1109
Author(s):  
Mantas Rubežius ◽  
Kęstutis Venslauskas ◽  
Kęstutis Navickas ◽  
Rolandas Bleizgys

Anaerobic digestion of poultry manure is a potentially-sustainable means of stabilizing this waste while generating biogas. However, technical, and environmental protection challenges remain, including high concentrations of ammonia, low C/N ratios, limited digestibility of bedding, and questions about transformation of nutrients during digestion. This study evaluated the effect of primary biological treatment of poultry manure on the biogas production process and reduction of ammonia emissions. Biogas yield from organic matter content in the aerobic pretreatment groups was 13.96% higher than that of the control group. Biogas production analysis showed that aerobic pretreatment of poultry manure has a positive effect on biogas composition; methane concentration increases by 6.94–7.97% after pretreatment. In comparison with the control group, NH3 emissions after aerobic pretreatment decreased from 3.37% (aerobic pretreatment without biological additives) to 33.89% (aerobic pretreatment with biological additives), depending on treatment method.


2011 ◽  
Vol 183-185 ◽  
pp. 552-556
Author(s):  
Zhi Qin ◽  
Dan Qin ◽  
Dan Li

Bio-hydrogen production from diluted molasses by anaerobic activated sludge was investigated in a continuous stirred-tank reactor (CSTR) under condition of continuous flow in this study. Research shows that the reactor started up under the condition of influent COD concentration 3000mg/L, HRT8h, pH6.5~7.5 and (35±1) °C. The process performed steadily and a dominant butyric acid and acetic acid type fermentation population was established, acetic acid and butyric acid accounted for about 80% in the liquid fermentation products. The effluent PH value was maintained about 5.0. The biogas yield could reach at 4.87L/d while hydrogen yield reached 41.25mL/d under the condition. When influent COD concentration rose to 5500 mg/L, the biogas yield and hydrogen yield as high as 9.45L/d and 119.98mL/d were obtained.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Pietro Carlozzi

The main goal of this study was to increase the hydrogen production rate improving the culture technique and the photobioreactor performances. Experiments were carried out at a constant culture temperature of 30°C and at an average irradiance of 480 W m−2using a cylindrical photobioreactor (4.0 cm, internal diameter). The culture technique, namely, the semicontinuous regime for growingRhodopseudomonas palustris42OL made it possible to achieve a very high daily hydrogen production rate of 594 ± 61 mL (H2) L−1 d−1. This value, never reported for this strain, corresponds to about 25 mL (H2) L−1 h−1, and it was obtained when the hydraulic retention time (HRT) was of 225 hours. Under the same growth conditions, a very high biomass production rate (496 ± 45 mg (dw) L−1 d−1) was also achieved. Higher or lower HRTs caused a reduction in both the hydrogen and the biomass production rates. The malic-acid removal efficiency (MAre) was always higher than 90%. The maximal hydrogen yield was 3.03 mol H2mol MA−1at the HRT of 360 hours. The highest total energy conversion efficiency was achieved at the HRT of 225 hours.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3074
Author(s):  
Apostolos Spyridonidis ◽  
Ioanna A. Vasiliadou ◽  
Christos S. Akratos ◽  
Κaterina Stamatelatou

Biogas plants have been started to expand recently in Greece and their positive contribution to the economy is evident. A typical case study is presented which focuses on the long-term monitoring (lasting for one year) of a 500 kW mesophilic biogas plant consisting of an one-stage digester. The main feedstock used was cow manure, supplemented occasionally with chicken manure, corn silage, wheat/ray silage, glycerine, cheese whey, molasses and olive mill wastewater. The mixture of the feedstocks was adjusted based on their availability, cost and biochemical methane potential. The organic loading rate (OLR) varied at 3.42 ± 0.23 kg COD m−3 day−1 (or 2.74 ± 0.18 kg VS m−3 day−1) and resulted in a stable performance in terms of specific biogas production rate (1.27 ± 0.12 m3 m−3 day−1), biogas yield (0.46 ± 0.05 m3 kg−1 VS, 55 ± 1.3% in methane) and electricity production rate (12687 ± 1140 kWh day−1). There were no problems of foaming, nor was there a need for trace metal addition. The digestate was used by the neighboring farmers who observed an improvement in their crop yield. The profit estimates per feedstock indicate that chicken manure is superior to the other feedstocks, while molasses, silages and glycerin result in less profit due to the long distance of the biogas plant from their production source. Finally, the greenhouse gas emissions due to the digestate storage in the open air seem to be minor (0.81% of the methane consumed).


Author(s):  
Jialin Chen ◽  
Ruijiang Yang ◽  
Da Xu ◽  
Bin Zhou ◽  
Yifang Jin

AbstractLow biogas yield in cold climates has brought great challenges in terms of the flexibility and resilience of biogas energy systems. This paper proposes a maximum production point tracking method for a solar-boosted biogas generation system to enhance the biogas production rate in extreme climates. In the proposed method, a multi-dimensional R–C thermal circuit model is formulated to analyze the digesting thermodynamic effect of the anaerobic digester with solar energy injection, while a hydrodynamic model is formulated to express the fluid dynamic interaction between the hot-water circulation flow and solar energy injection. This comprehensive dynamic model can provide an essential basis for controlling the solar energy for digester heating to optimize anaerobic fermentation and biogas production efficiency in extreme climates. A model predictive control method is developed to accurately track the maximum biogas production rate in varying ambient climate conditions. Comparative results demonstrate that the proposed methodology can effectively control the fermentation temperature and biogas yield in extreme climates, and confirm its capability to enhance the flexibility and resilience of the solar-boosted biogas generation system.


2013 ◽  
Vol 864-867 ◽  
pp. 225-228
Author(s):  
Zhi Qin ◽  
Qing Qin ◽  
Ying Yang

A continuous stirred-tank reactor (CSTR) was used to produce biohydrogen gas from organic wastewater. The hydrogen producing reactor was operated under high organic loading rate of 21 kgCOD/m3·d, and molasses wastewater was used as substrate. Hydrogen production rate, pH value, sugar utilizing rate and fermentative products in effluent were investigated in continuous fermentation. When Organic Loading Rate was controlled at 21 kgCOD/m3·d, the average concentrations of acetic acid, ethanol, propionic acid, butyric acid and valeric acid in liquid fermentative products were 833, 748, 482, 484 and 256mg/L respectively. There is not any fermentation product playing dominant role absolutely in hydrogen production fermentation. The pH value in effluent was about 4.7~4.9, the average utilizing rate of sugar reached 92.1%, most of the sugar in molasses wastewater was utilized. The biogas production rate in hydrogen producing fermentation was from 21.2 to 27.1L/d, and the average biogas production rate was about 25.1L/d. The hydrogen content was about 37%.


2013 ◽  
Vol 634-638 ◽  
pp. 981-986
Author(s):  
Dong Gou Sun ◽  
Bing Huang ◽  
Wen Gang Zuo ◽  
Huai Yuan Zhao ◽  
Wen Wei ◽  
...  

The processes of biomass growth, hydrogen production and sucrose degradation were systemically investigated about batch anaerobic fermentation which is based on activated sludge for a basic strain and the simulating sucrose wastewater for a substrate. The kinetics of microbial growth, hydrogen production and sucrose degradation were proposed according to the Compertz equation and the Luedeking-Piret equation. The relationship between the biomass, hydrogen and substrate were also evaluated. The results shown that the hydrogen is a main produce of the formation process which is a growth-associated, a high biomass is favorable to increasing the hydrogen yield and shortening lag time. The three kinetic models equation have a good coincidence with the experimental data, and can really reflect the hydrogen production process from wastewater contained sucrose. The results will provide helpful reference for the large-scale production and theory study of hydrogen production.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 23-29 ◽  
Author(s):  
S.-H. Kim ◽  
S.-K. Han ◽  
H.-S. Shin

This study was conducted to compare the performance of a continuous-flow stirred-tank reactor (CSTR) and an anaerobic sequencing batch reactor (ASBR) for fermentative hydrogen production at various substrate concentrations. Heat-treated anaerobic sludge was utilized as an inoculum, and hydraulic retention time (HRT) for each reactor was maintained at 12h. At the influent sucrose concentration of 5g COD/L, start-up was not successful in both reactors. The CSTR, which was started-up at 10g COD/L, showed stable hydrogen production at the influent sucrose concentrations of 10–60g COD/L during 203 days. Hydrogen production was dependent on substrate concentration, resulting in the highest performance at 30g COD/L. At the lower substrate concentration, the hydrogen yield (based on hexose consumed) decreased with biomass reduction and changes in fermentation products. At the higher substrate concentration, substrate inhibition on biomass growth caused the decrease of carbohydrate degradation and hydrogen yield (based on hexose added). The ASBR showed higher biomass concentration and carbohydrate degradation efficiency than the CSTR, but hydrogen production in the ASBR was less effective than that in the CSTR at all the substrate concentrations.


Sign in / Sign up

Export Citation Format

Share Document