scholarly journals Modeling Viscosity and Density of Ethanol-Diesel-Biodiesel Ternary Blends for Sustainable Environment

2020 ◽  
Vol 12 (12) ◽  
pp. 5186 ◽  
Author(s):  
Luqman Razzaq ◽  
Muhammad Farooq ◽  
M. A. Mujtaba ◽  
Farooq Sher ◽  
Muhammad Farhan ◽  
...  

Rapid depletion in fossil fuels, inflation in petroleum prices, and rising energy demand have forced towards alternative transport fuels. Among these alternative fuels, diesel-ethanol and diesel-biodiesel blends gain the most attention due to their quality characteristics and environmentally friendly nature. The viscosity and density of these biodiesel blends are slightly higher than diesel, which is a significant barrier to the commercialization of biodiesel. In this study, the density and viscosity of 30 different ternary biodiesel blends was investigated at 15 °С and 40 °С, respectively. Different density and viscosity models were developed and tested on biodiesel blends soured from different feedstock’s including palm, coconut, soybean, mustard, and calophyllum oils. The prognostic ability and precisions of these developed models was assessed statistically using Absolute Percentage Error (APE) and Mean Absolute Percentage Error (MAPE). The MAPE of 0.045% and 0.085% for density model and 1.85%, 1.41%, 3.48% and 2.27%, 1.85%, 3.50% for viscosity models were obtained on % volume and % mass basis. These developed correlations are useful for ternary biodiesel blends where alcohols are the part of biodiesel blends. The modeled values of densities and viscosities of ternary blends were significantly comparable with the measured densities and viscosities, which are feasible to avoid the harm of vehicles’ operability.

2021 ◽  
pp. 1-26
Author(s):  
Prabhakar Sharma

Abstract Alternative fuels, such as biodiesel, can be used in place of fossil fuels, although they have a greater viscosity and a longer igniting delay. To compensate for these limitations, several additives are added to biodiesel. The cetane improver Di-Tert Butyl Peroxide (DTBP) was investigated as an additive in this work. DTBP was shown to influence the combustion and emission properties of waste cooking oil biodiesel-diesel blends. The multi-objective response surface technique (MORSM) with Box-Behnken design was used to decrease the number of trials to conserve precious resources such as human effort, time, and money. Theil's uncertainty for the model's predictive capabilities (Theil's U2) was less than 0.1189, demonstrating its robustness. Nash-Sutcliffe efficiency was excellent (0.9885 – 0.9995), with a mean absolute percentage error of less than 1.32%. The engine operating parameters that were optimized were 71.64% engine load, 4964 ppm DTBP additive, and 24.98-degree advance ignition timing. The MORSM-based proposed technique's reliability and robustness validate the usage of DTBP with biodiesel blends, model prediction, and optimization.


2021 ◽  
Vol 13 (2) ◽  
pp. 788
Author(s):  
Zulqarnain ◽  
Muhammad Ayoub ◽  
Mohd Hizami Mohd Yusoff ◽  
Muhammad Hamza Nazir ◽  
Imtisal Zahid ◽  
...  

Dependence on fossil fuels for meeting the growing energy demand is damaging the world’s environment. There is a dire need to look for alternative fuels that are less potent to greenhouse gas emissions. Biofuels offer several advantages with less harmful effects on the environment. Biodiesel is synthesized from the organic wastes produced extensively like edible, non-edible, microbial, and waste oils. This study reviews the feasibility of the state-of-the-art feedstocks for sustainable biodiesel synthesis such as availability, and capacity to cover a significant proportion of fossil fuels. Biodiesel synthesized from oil crops, vegetable oils, and animal fats are the potential renewable carbon-neutral substitute to petroleum fuels. This study concludes that waste oils with higher oil content including waste cooking oil, waste palm oil, and algal oil are the most favorable feedstocks. The comparison of biodiesel production and parametric analysis is done critically, which is necessary to come up with the most appropriate feedstock for biodiesel synthesis. Since the critical comparison of feedstocks along with oil extraction and biodiesel production technologies has never been done before, this will help to direct future researchers to use more sustainable feedstocks for biodiesel synthesis. This study concluded that the use of third-generation feedstocks (wastes) is the most appropriate way for sustainable biodiesel production. The use of innovative costless oil extraction technologies including supercritical and microwave-assisted transesterification method is recommended for oil extraction.


Author(s):  
K. R. Balasubramanian ◽  
R. Anand ◽  
B. Venkatesh ◽  
G. R. Kannan ◽  
S. P. Sivapirakasam

The world needs an alternative fuels that could maintain the world running on its wheels due to the increasing energy demand and uncertainty in availability of the fossil fuels. The present investigation analyzes the scope of utilizing the Deccan hemp oil based biodiesel derived from jute seed as an alternative to the diesel. Experimental investigation was carried out at diesel engine with different loads from 0% to 100% and 10% overload condition under a constant speed of 1500 rpm. It was found that the reduction in brake thermal efficiency and higher brake specific fuel consumption was observed with biodiesel in comparison with diesel. The carbon monoxide (CO), carbon-dioxide (CO2), unburnt hydrocarbon (HC) and nitric oxide (NO) emissions for Deccan hemp oil based biodiesel were reduced by 0.2% vol, 1.6% vol, 62.5%, 36.84% whereas slightly higher smoke emission was observed when compared to diesel fuel. These studies revealed that Deccan hemp oil based biodiesel can be used as a fuel in compression ignition engine without any engine modifications.


2014 ◽  
Vol 592-594 ◽  
pp. 1559-1563
Author(s):  
Thangaraju Rajasekaran ◽  
K. Duraisamy ◽  
K.R. Arvindd ◽  
D. Thamilarasu ◽  
Venkatachalam Chandraprabu ◽  
...  

Depletion of fossil fuels, unaffordability of conventional fuels (petrol, diesel) and atmospheric pollution lead researchers to develop alternative fuels. Fuels derived from renewable biological resources used in diesel engines are known as biodiesel. Biodiesel is environmental friendly liquid fuel similar to petrol and diesel in combustion properties. Increasing environmental concern, diminishing petroleum reserves and agriculture based economy of our country are the driving forces to promote biodiesel as an alternate fuel. Hydrogen seems to be viable fuel to meet sustainable energy demand with minimum environmental impact. Hydrogen has high calorific value and clean burning characteristics which makes it effective fuel for future. It was found that hydrogen usage reduce emissions such as CO2and HC. India is one of the largest producers of neem oil and its seed contains 30% oil content. It is an untapped source in India, so the neem oil usage will be a best option. The investigation made on pure neem oil and neem oil with hydrogen addition at different flow rate (2 lpm & 4 lpm) in CI engines. The result shows that, brake thermal efficiency of neem oil with 4 lpm hydrogen was increased to 7.98% compare to pure neem oil at 4 Nm torque and fuel consumption of neem oil with 4 lpm hydrogen was decreased to 13.49% compared to pure neem oil at 4 Nm torque.


Author(s):  
Subramanyam Pavuluri ◽  
B. Sidda Reddy ◽  
B.Durga Prasad

In the present scenario of increased industrialization and transportation in the world leads to increased consumption of fossil fuels which in turns leads to depletion of fossil fuels at a faster rate. Fossil fuels combustion is the dominant source for greenhouse gases and global warming. In view of energy crisis raised in 1970’s and environmental concern, many researches are directed towards search of alternative fuels which can replace consumption of fossil fuels as well as reduce pollution. In developing countries like India which is agriculture land the best alternative fuels are biodiesel and ethanol as they are produced from renewable feedstocks like sugarcane, corn etc. and they are also less hazardous to environment because of lower emission property. Ethanol blends results in significant reduction of emissions of hydrocarbon (HC), carbon monoxide (CO) and particulates matter but increase in nitrogen oxides (NOx). The main purpose of ethanol addition is to reduce the viscosity of biodiesel blends. This paper represents significance of Compression Ratio(CR) on performance, combustion and emission of single cylinder four stroke CI diesel engine by using various compression ratios such as 17.5:1, 18.5:1 and 19.5:1. Experimental research has been conducted with four types of ethanol blends, namely E10, E20, E30 and E40. Ethanol-biodiesel mixture mixed with 2% emulsifier 1% diethyl carbonate and 1% ethyl acetate to maintain similarity and to avoid phase separation. Ethanol subjected to high compression ratio has been used to increase brake thermal efficiency (BTE). The compression ratio has been increased to improve the combustion and performance of the diesel engine.


The world’s energy demand has increased drastically in the past and is likely to increase even more in the upcoming years. The fossil fuels are non-renewable energy, depleted at fast rate and this fact intensifies the need to look for alternative fuels to meet our day to day energy needs in all power sectors. The consumption rate of energy has increased tremendously and it necessitates increased supply of energy in all forms. The conventional energy resources like diesel, petroleum, gas and coal will soon be depleted. Hence there is a dire requirement to generate alternative sources of the fuel. Biodiesel is one of the best alternative and renewable fuel. It is oxygenate, Sulphur free and biodegradable. Oxygen content in biodiesel helps to improve the efficiency of the engine. Combustion chamber in compression ignition engine is one of the most important roles to enhance the fuel – air mixing rate (swirl) in short possible time. The turbulence is guided by the shape of the combustion chamber. The air swirl is created in combustion chamber, when the fuel air mixing rate increases. Hence the time duration of air fuel mixing rate decreases. The overall duration of the combustion process to shorten as swirl has leads to increases mechanical efficiency. In this work, in which biodiesel is prepared by transesterification process and engine performance is optimized by different parameters such as Piston shape, Load and Blend ratio and analyzed by Analysis of Variance.


2019 ◽  
Vol 4 (1) ◽  
pp. 34-47
Author(s):  
Marcos Gutiérrez

The energy demand increases with the social, industrial and technological requirements, independent of the sources to supply it. More than half of the total energy consumption is supplied by fossil fuels, which can be replaced by alternative and more environmentally friendly fuels. The present research evaluates thermal efficiency, net output work and energy availability from recycled vegetable-animal and synthetic-mineral substances, in a pure state and blended with neat diesel. The calculation uses mainly the heat value of each fuel and the air properties along each stroke of the diesel cycle. The purpose of the present research consists in the evaluation of the thermal efficiency of alternative fuels in functions of the whole engine cycle and not only Stoichiometric the heat value and quantity of each fuel. It was found that the neat fuel from recycled edible sources provides more net output work and is able to perform longer combustions, while the advantage of higher thermal efficiencies using recycled lubricating oil relies on its use as an additive in a blend with neat diesel. The use of alternative and ecological neat fuels of blends is conditioned by the efforts to produce them and by the resulting thermal efficiency, net output work and remaining energetic availability.


2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


2013 ◽  
pp. 109-128 ◽  
Author(s):  
C. Rühl

This paper presents the highlights of the third annual edition of the BP Energy Outlook, which sets out BP’s view of the most likely developments in global energy markets to 2030, based on up-to-date analysis and taking into account developments of the past year. The Outlook’s overall expectation for growth in global energy demand is to be 36% higher in 2030 than in 2011 and almost all the growth coming from emerging economies. It also reflects shifting expectations of the pattern of supply, with unconventional sources — shale gas and tight oil together with heavy oil and biofuels — playing an increasingly important role and, in particular, transforming the energy balance of the US. While the fuel mix is evolving, fossil fuels will continue to be dominant. Oil, gas and coal are expected to converge on market shares of around 26—28% each by 2030, and non-fossil fuels — nuclear, hydro and renewables — on a share of around 6—7% each. By 2030, increasing production and moderating demand will result in the US being 99% self-sufficient in net energy. Meanwhile, with continuing steep economic growth, major emerging economies such as China and India will become increasingly reliant on energy imports. These shifts will have major impacts on trade balances.


Sign in / Sign up

Export Citation Format

Share Document