scholarly journals A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies

2021 ◽  
Vol 13 (2) ◽  
pp. 788
Author(s):  
Zulqarnain ◽  
Muhammad Ayoub ◽  
Mohd Hizami Mohd Yusoff ◽  
Muhammad Hamza Nazir ◽  
Imtisal Zahid ◽  
...  

Dependence on fossil fuels for meeting the growing energy demand is damaging the world’s environment. There is a dire need to look for alternative fuels that are less potent to greenhouse gas emissions. Biofuels offer several advantages with less harmful effects on the environment. Biodiesel is synthesized from the organic wastes produced extensively like edible, non-edible, microbial, and waste oils. This study reviews the feasibility of the state-of-the-art feedstocks for sustainable biodiesel synthesis such as availability, and capacity to cover a significant proportion of fossil fuels. Biodiesel synthesized from oil crops, vegetable oils, and animal fats are the potential renewable carbon-neutral substitute to petroleum fuels. This study concludes that waste oils with higher oil content including waste cooking oil, waste palm oil, and algal oil are the most favorable feedstocks. The comparison of biodiesel production and parametric analysis is done critically, which is necessary to come up with the most appropriate feedstock for biodiesel synthesis. Since the critical comparison of feedstocks along with oil extraction and biodiesel production technologies has never been done before, this will help to direct future researchers to use more sustainable feedstocks for biodiesel synthesis. This study concluded that the use of third-generation feedstocks (wastes) is the most appropriate way for sustainable biodiesel production. The use of innovative costless oil extraction technologies including supercritical and microwave-assisted transesterification method is recommended for oil extraction.

2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


2020 ◽  
Vol 24 (16) ◽  
pp. 1876-1891
Author(s):  
Qiuyun Zhang ◽  
Yutao Zhang ◽  
Jingsong Cheng ◽  
Hu Li ◽  
Peihua Ma

Biofuel synthesis is of great significance for producing alternative fuels. Among the developed catalytic materials, the metal-organic framework-based hybrids used as acidic, basic, or supported catalysts play major roles in the biodiesel production. This paper presents a timely and comprehensive review of recent developments on the design and preparation of metal-organic frameworks-based catalysts used for biodiesel synthesis from various oil feedstocks, including MILs-based catalysts, ZIFs-based catalysts, UiO-based catalysts, Cu-BTC-based catalysts, and MOFs-derived porous catalysts. Due to their unique and flexible structures, excellent thermal and hydrothermal stability, and tunable host-guest interactions, as compared with other heterogeneous catalysts, metal-organic framework-based catalysts have good opportunities for application in the production of biodiesel at industrial scale.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 812
Author(s):  
Hoang Chinh Nguyen ◽  
My-Linh Nguyen ◽  
Chia-Hung Su ◽  
Hwai Chyuan Ong ◽  
Horng-Yi Juan ◽  
...  

Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.


2021 ◽  
pp. 20-27
Author(s):  
Ngee Sing Chong ◽  
Francis Uchenna Okejiri ◽  
Saidi Abdulramoni ◽  
Shruthi Perna ◽  
Beng Guat Ooi

Due to the high cost of feedstock and catalyst in biodiesel production, the viability of the biodiesel industry has been dependent on government subsidies or tax incentives. In order to reduce the cost of production, food wastes including eggshells and oyster shells have been used to prepare calcium oxide (CaO) catalysts for the transesterification reaction of biodiesel synthesis. The shells were calcined at 1000 °C for 4 hours to obtain CaO powders which were investigated as catalysts for the transesterification of waste cooking oil. The catalysts were characterized by Fourier Transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and X-ray fluorescence (XRF) spectroscopy. Reaction parameters such as methanol-to-oil molar ratio, CaO catalyst concentration, and reaction time were evaluated and optimized for the percentage conversion of cooking oil to biodiesel esters. The oyster-based CaO showed better catalytic activity when compared to the eggshell-based CaO under the same set of reaction conditions.


2018 ◽  
Vol 12 (1) ◽  
pp. 95-110 ◽  
Author(s):  
Estela Kamile Gelinski ◽  
Fabiane Hamerski ◽  
Marcos Lúcio Corazza ◽  
Alexandre Ferreira Santos

Objective: Biodiesel is a renewable fuel considered as the main substitute for fossil fuels. Its industrial production is mainly made by the transesterification reaction. In most processes, information on the production of biodiesel is essentially done by off-line measurements. Methods: However, for the purpose of control, where online monitoring of biodiesel conversion is required, this is not a satisfactory approach. An alternative technique to the online quantification of conversion is the near infrared (NIR) spectroscopy, which is fast and accurate. In this work, models for biodiesel reactions monitoring using NIR spectroscopy were developed based on the ester content during alkali-catalyzed transesterification reaction between soybean oil and ethanol. Gas chromatography with flame ionization detection was employed as the reference method for quantification. FT-NIR spectra were acquired with a transflectance probe. The models were developed using Partial Least Squares (PLS) regression with synthetic samples at room temperature simulating reaction composition for different ethanol to oil molar ratios and conversions. Model predictions were then validated online for reactions performed with ethanol to oil molar ratios of 6 and 9 at 55ºC. Standard errors of prediction of external data were equal to 3.12%, hence close to the experimental error of the reference technique (2.78%), showing that even without using data from a monitored reaction to perform calibration, proper on-line predictions were provided during transesterification runs. Results: Additionally, it is shown that PLS models and NIR spectra of few samples can be combined to accurately predict the glycerol contents of the medium, making the NIR spectroscopy a powerful tool for biodiesel production monitoring.


Khazanah ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Tiara Nur Azizah ◽  
◽  
Alya Putri Ramadhanty ◽  
Nadya Feranika ◽  
◽  
...  

Indonesia has entered an energy emergency phase, proven that Indonesia is no longer a surplus oil producer due to the productivity of the wells decrease over the years and the pattern of people's consumption of fossil fuels has been exceeding the production capacity. Therefore, we need the right solution to overcome this problem, which is developing biodiesel as renewable energy based on microalgae oil. The microalgae used in this research is the consortium of microalgae Botryococcus braunii and Dunaliella sp. Microalgae were cultivated and harvested through the dewatering process with 1 g naoh/1 L water concentration. Water contents of cultivated Botryococcus braunii are 60.2505% while Dunaliella sp. Is 64.5002%. The oil from microalgae is obtained by extracted dry microalgae through the soxhlet extraction (leaching) method with mixed solvent n-hexane and ethanol as the co-solvent using a variety of solvent ratio 2:1 and 3:1. Pure microalgae consortium oil separated from the solvent using the distillation process then analyzed with GC-FID. The analysis result is trans-linoleic acid is the most dominant fatty acid contained in this oil. Transesterification process with cao (1.5% of oil weight) as a catalyst. The results obtained from this study are the oil yield 72% extracted with a solvent mixture of n-hexane and ethanol 2:1 and 60.4% for 3:1. The biodiesel synthesis resulted in the amount of yield obtained from the solvent ratio 2:1 extraction is 94.3%, while with solvent ratio 3:1 is 79.2%. The quality of both biodiesels has met the requirements of SNI 7182:2015 and ASTM D7467, except the density of biodiesel with extraction solvent composition 3:1 which is below the standard. Therefore, the best biodiesel quality is obtained from microalgae consortium’s oil with the composition of extraction solvent 2:1.


Author(s):  
Muzhda Azizi ◽  
Sweeta Akbari

Nowadays, preservation of natural resources on earth is one of the most important concerns of humanity. In this regard, increasing the consumption of energy is one of the most critical challenges that humans are facing. Because, on the one hand, the untapped use of different sources of energy from fossil fuels can destroy this natural resource and, on the other hand, pollution from the use of these resources is a serious threat to the environment. Recent research suggests that affordable, sustainable and environmentally friendly fuels, which can be a good alternative to fossil fuels, have become more important. Therefore, biodiesel has made it possible to release less greenhouse gas emission and low toxicity emissions, which can partly meet fuel requirements and is the best alternative for petroleum diesel. In addition, the waste cooking oils are a major source of biodiesel for their essential compounds, such as glycerol. The use of waste cooking oils can reduce biodiesel production cost by 60 to 90 percent. Therefore, the main objective of this review is to study the production of biodiesel using transesterification reaction of waste cooking oil as an alternative fuel to petroleum diesel that can be used easily in diesel engines.


2020 ◽  
Author(s):  
Rehab Metwally ◽  
hassan Abu Hashish ◽  
Haitham Abd El-Samad ◽  
Mostafa Awad ◽  
Ghada Kadry

Abstract Background: The world depends almost on fossil fuels. This leads to depletion of oil and an increase in environmental pollution. Therefore, the researchers search to find alternative fuels. Waste cooking oil (WCO) was selected as feedstock for biodiesel production to eliminates the pollution problems. The agricultural waste is very big and without cost, this leads to the use of the rice straw in preparing a catalyst for biodiesel production. Results: The reusability of the acidic catalyst confirmed that the conversion efficiency was high until after 8 cycles of the production. The highest conversion efficiency of the converting WCO extended to 90.38% with 92.5% maximum mass yield and methyl ester content 97.7% wt. at the optimized conditions. The result was indicating that B15 is the best blend for thermal efficiency and specific fuel consumption. All emission concentrations decrease with increasing the engine load, especially for B15 fuels compared to the diesel oil.Conclusion: The novelty of this paper is assessing the methyl esters from the local WCO as an alternative fuel for diesel engines using a heterogeneous catalyst based on the agricultural waste. The performance of the diesel engines and its exhaust emissions have been experimentally investigated with the produced biodiesel of WCO as a blend (B10, B15, and B20) compared to the diesel.


2019 ◽  
Vol 96 (12) ◽  
pp. 1379-1388
Author(s):  
Larissa Braga Bueno‐Borges ◽  
Grasiela Cristina Pereira dos Santos ◽  
Severino Matias Alencar ◽  
Marisa Aparecida Bismara Regitano‐d'Arce

RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41625-41679
Author(s):  
Bishwajit Changmai ◽  
Chhangte Vanlalveni ◽  
Avinash Prabhakar Ingle ◽  
Rahul Bhagat ◽  
Lalthazuala Rokhum

An ever-increasing energy demand and environmental problems associated with exhaustible fossil fuels have led to the search for an alternative energy. In this context, biodiesel has attracted attention worldwide as an alternative to fossil fuel.


Sign in / Sign up

Export Citation Format

Share Document