scholarly journals Efficient Gear Ratio Selection of a Single-Speed Drivetrain for Improved Electric Vehicle Energy Consumption

2020 ◽  
Vol 12 (21) ◽  
pp. 9254
Author(s):  
Polychronis Spanoudakis ◽  
Gerasimos Moschopoulos ◽  
Theodoros Stefanoulis ◽  
Nikolaos Sarantinoudis ◽  
Eftichios Papadokokolakis ◽  
...  

The electric vehicle (EV) market has grown over the last few years and even though electric vehicles do not currently possess a high market segment, it is projected that they will do so by 2030. Currently, the electric vehicle industry is looking to resolve the issue of vehicle range, using higher battery capacities and fast charging. Energy consumption is a key issue which heavily effects charging frequency and infrastructure and, therefore, the widespread use of EVs. Although several factors that influence energy consumption of EVs have been identified, a key technology that can make electric vehicles more energy efficient is drivetrain design and development. Based on electric motors’ high torque capabilities, single-speed transmissions are preferred on many light and urban vehicles. In the context of this paper, a prototype electric vehicle is used as a test bed to evaluate energy consumption related to different gear ratio usage on single-speed transmission. For this purpose, real-time data are recorded from experimental road tests and a dynamic model of the vehicle is created and fine-tuned using dedicated software. Dynamic simulations are performed to compare and evaluate different gear ratio set-ups, providing valuable insights into their effect on energy consumption. The correlation of experimental and simulation data is used for the validation of the dynamic model and the evaluation of the results towards the selection of the optimal gear ratio. Based on the aforementioned data, we provide useful information from numerous experimental and simulation results that can be used to evaluate gear ratio effects on electric vehicles’ energy consumption and, at the same time, help to formulate evolving concepts of smart grid and EV integration.

2021 ◽  
Author(s):  
Ungki Lee ◽  
Sunghyun Jeon ◽  
Ikjin Lee

Abstract Shared autonomous vehicles (SAVs) encompassing autonomous driving technology and car-sharing service are expected to become an essential part of transportation system in the near future. Although many studies related to SAV system design and optimization have been conducted, most of them are focused on shared autonomous battery electric vehicle (SABEV) systems, which employ battery electric vehicles (BEVs) as SAVs. As fuel cell electric vehicles (FCEVs) emerge as alternative fuel vehicles along with BEVs, the need for research on shared autonomous fuel cell electric vehicle (SAFCEV) systems employing FCEVs as SAVs is increasing. Therefore, this study newly presents a design framework of SAFCEV system by developing an SAFCEV design model based on a proton-exchange membrane fuel cell (PEMFC) model. The test bed for SAV system design is Seoul, and optimization is conducted for SABEV and SAFCEV systems to minimize the total cost while satisfying the customer wait time constraint, and the optimization results of both systems are compared. From the results, it is verified that the SAFCEV system is feasible and the total cost of the SAFCEV system is even lower compared to the SABEV system. In addition, several observations on various operating environments of SABEV and SAFCEV systems are obtained from parametric studies.


2017 ◽  
Vol 31 (34) ◽  
pp. 1750324 ◽  
Author(s):  
Hong Xiao ◽  
Hai-Jun Huang ◽  
Tie-Qiao Tang

Electric vehicle (EV) has become a potential traffic tool, which has attracted researchers to explore various traffic phenomena caused by EV (e.g. congestion, electricity consumption, etc.). In this paper, we study the energy consumption (including the fuel consumption and the electricity consumption) and emissions of heterogeneous traffic flow (that consists of the traditional vehicle (TV) and EV) under three traffic situations (i.e. uniform flow, shock and rarefaction waves, and a small perturbation) from the perspective of macro traffic flow. The numerical results show that the proportion of electric vehicular flow has great effects on the TV’s fuel consumption and emissions and the EV’s electricity consumption, i.e. the fuel consumption and emissions decrease while the electricity consumption increases with the increase of the proportion of electric vehicular flow. The results can help us better understand the energy consumption and emissions of the heterogeneous traffic flow consisting of TV and EV.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7591
Author(s):  
Wojciech Cieslik ◽  
Filip Szwajca ◽  
Jedrzej Zawartowski ◽  
Katarzyna Pietrzak ◽  
Slawomir Rosolski ◽  
...  

The growing number of electric vehicles in recent years is observable in almost all countries. The country’s energy transition should accompany this rise in electromobility if it is currently generated from non-renewable sources. Only electric vehicles powered by renewable energy sources can be considered zero-emission. Therefore, it is essential to conduct interdisciplinary research on the feasibility of combining energy recovery/generation structures and testing the energy consumption of electric vehicles under real driving conditions. This work presents a comprehensive approach for evaluating the energy consumption of a modern public building–electric vehicle system within a specific location. The original methodology developed includes surveys that demonstrate the required mobility range to be provided to occupants of the building under consideration. In the next step, an energy balance was performed for a novel near-zero energy building equipped with a 199.8 kWp photovoltaic installation, the energy from which can be used to charge an electric vehicle. The analysis considered the variation in vehicle energy consumption by season (winter/summer), the actual charging profile of the vehicle, and the parking periods required to achieve the target range for the user.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6423
Author(s):  
Jacek Pielecha ◽  
Kinga Skobiej ◽  
Karolina Kurtyka

One of the environmental aims of the European Union is to achieve climate neutrality by 2050. According to European Parliament data, transport emissions accounted for about 25% of global carbon dioxide emissions in 2016, in which road transport had the largest share (approximately 72%). This phenomenon is particularly visible in urban agglomerations. The solution examples are the popularization of hybrid vehicles and the development of electromobility. The aim of this paper is an assessment of the energy consumption and exhaust emissions from passenger cars fitted with different powertrains in actual operation. For the tests, passenger cars with conventional engines of various emission classes were used as well as the latest hybrid vehicles and an electric car. It enabled a comparative assessment of the energy consumption under different traffic conditions, with particular emphasis on the urban phase and the entire RDE (Real Driving Emissions) test. The results were analyzed to identify changes in these environmental factors that have occurred with the technical advancement of vehicles. The lowest total energy consumption in real traffic conditions is characteristic of an electric vehicle; the plug-in hybrid vehicle with a gasoline engine is about 10% bigger, and the largest one is a combustion vehicle (30% bigger than an electric vehicle). These data may contribute to the classification of vehicles and identification of advantages of the latest developments in conventional, hybrid, and electric vehicles.


2012 ◽  
Vol 187 ◽  
pp. 20-26 ◽  
Author(s):  
Qiang Gu ◽  
Xiu Sheng Cheng

The driving range of electric vehicles is less than traditional vehicles due to the restriction of energy storage. It is raising the efficiency of each power component that is one of increasing electric vehicle driving range methods. A particle swarm optimization is used to optimize transmission gear ratio on established electric vehicle power component models. A simulation that simulates the energy consumption of vehicle after gear ratio optimization is given to compare with the actual energy consumption data of the vehicle before gear ratio optimization. The results show that the energy consumption and driving range of the latter are better than the former therefore this optimization is valid.


2013 ◽  
Vol 543 ◽  
pp. 163-166
Author(s):  
Đorđe Obradović ◽  
Živorad Mihajlović ◽  
Vladimir Milosavljević ◽  
Miloš B. Živanov

In this paper, one solution of graphic LCD control board for lightweight electric vehicles is shown. The main idea was to build adoptable hardware solution that can be fast and easy applied in different electrical vehicles and easy for modifications. It was designed, built and tested graphic LCD for monitoring and seting up of main parameters and control signals for lightweight electric vehicle. Some of parameters that could be displayed on graphic LCD are charge status, actual speed, total mileage, daily mileage and indicators of direction. Also we discussed about other possibilities for some sensors that can be used to monitor vehicle speed and ways of visualizing the parameters of interest. The main principles that were used during the selection of hardware solutions implementation also are shown.


Author(s):  
Koji Kishida ◽  
Mitsuo Tanaka ◽  
Ken Kanai ◽  
Yoshiaki Kato ◽  
Akihiro Ito

Based upon research experience on fuel cell technology at the Fukui University of Technology, an effort has been made to develop a hydrogen powered electric vehicle as a means of applying fuel cells, A polymer electrolyte fuel cell stack was chosen as the device of energy conversion from hydrogen to electricity. First, a detailed study on the performance of the fuel cell stack was carried out to assure compatibility with the vehicle energizing system. It was found that it should function well as the prime power source for electric vehicles. Selection of the traction motor was one of the optimization studies. As a result of tests with various motors, two brushless d-c motors were adopted. A small electric vehicle, weighing 300kg and loaded with a H2-tank of 10 litres (15MPa), achieved 20 km/h and the duration was 2 hours.


2020 ◽  
Vol 12 (7) ◽  
pp. 2579 ◽  
Author(s):  
Ashish Kumar Karmaker ◽  
Md. Alamgir Hossain ◽  
Nallapaneni Manoj Kumar ◽  
Vishnupriyan Jagadeesan ◽  
Arunkumar Jayakumar ◽  
...  

The growing popularity of electric vehicles (EV) is creating an increasing burden on the power grid in Bangladesh due to massive energy consumption. Due to this uptake of variable energy consumption, environmental concerns, and scarcity of energy lead to investigate alternative energy resources that are readily available and environment friendly. Bangladesh has enormous potential in the field of renewable resources, such as biogas and biomass. Therefore, this paper proposes a design of a 20 kW electric vehicle charging station (EVCS) using biogas resources. A comprehensive viability analysis is also presented for the proposed EVCS from technological, economic, and environmental viewpoints using the HOMER (Hybrid Optimization of Multiple Energy Resources) model. The viability result shows that with the capacity of 15–20 EVs per day, the proposed EVCS will save monthly $16.31 and $29.46, respectively, for easy bike and auto-rickshaw type electric vehicles in Bangladesh compare to grid electricity charging. Furthermore, the proposed charging station can reduce 65.61% of CO2 emissions than a grid-based charging station.


Sign in / Sign up

Export Citation Format

Share Document