scholarly journals Minimal Monitoring of Improvements in Energy Performance after Envelope Renovation in Subsidized Single Family Housing in Madrid

2020 ◽  
Vol 13 (1) ◽  
pp. 235
Author(s):  
Fernando Martín-Consuegra ◽  
Fernando de Frutos ◽  
Ignacio Oteiza ◽  
Carmen Alonso ◽  
Borja Frutos

This study quantified the improvement in energy efficiency following passive renovation of the thermal envelope in highly inefficient residential complexes on the outskirts of the city of Madrid. A case study was conducted of a single-family terrace housing, representative of the smallest size subsidized dwellings built in Spain for workers in the nineteen fifties and sixties. Two units of similar characteristics, one in its original state and the other renovated, were analyzed in detail against their urban setting with an experimental method proposed hereunder for simplified, minimal monitoring. The dwellings were compared on the grounds of indoor environment quality parameters recorded over a period covering both winter and summer months. That information was supplemented with an analysis of the energy consumption metered. The result was a low-cost, reasonably accurate measure of the improvements gained in the renovated unit. The monitoring output data were entered in a theoretical energy efficiency model for the entire neighborhood to obtain an estimate of the potential for energy savings if the entire urban complex were renovated.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2416
Author(s):  
Marina Dorokhova ◽  
Fernando Ribeiro ◽  
António Barbosa ◽  
João Viana ◽  
Filipe Soares ◽  
...  

The energy efficiency requirements of most energy-consuming sectors have increased recently in response to climate change. For buildings, this means targeting both facility managers and building users with the aim of identifying potential energy savings and encouraging more energy-responsible behaviors. The Information and Communication Technology (ICT) platform developed in Horizon 2020 FEEdBACk project intends to fulfill these goals by enabling the optimization of energy consumption, generation, and storage and control of flexible devices without compromising comfort levels and indoor air quality parameters. This work aims to demonstrate the real-world implementation and functionality of the ICT platform composed of Load Disaggregation, Net Load Forecast, Occupancy Forecast, Automation Manager, and Behavior Predictor applications. Particularly, the results obtained by individual applications during the test phase are presented alongside the specific metrics used to evaluate their performance.


2017 ◽  
Vol 1 (2) ◽  
pp. 36 ◽  
Author(s):  
Hector Hernández

In order to improve the energy performance of buildings, the need to value economically investments of energy efficiency associated with the rehabilitation of dwellings arises. This point of view provides an useful tool for analysts who start in the economic appraisal of energy efficiency investments. The present research gives a conceptual framework for the economic assessment of these types of investments in dwellings. As a result, it is possible to identify two techniques in the appraisals of this nature: dynamic and static approaches. Both methods contrast the benefits (energy savings) with the costs of investments over time. However, they differentiate the opportunity and the moment when investment must be carried out given an uncertainty scenario. This conceptual precision allows the study of several publications where different alternatives in retrofitting houses where evaluated, confirming the considerations that must be taken into account when economic modelling is made: the type of approach to be used (dynamic or static) and; at the definition of the investment alternatives and scenarios, the aspects of time, irrevocability and uncertainty.ResumenEn pro de la mejora del desempeño energético de los edificios, surge la necesidad de evaluar económicamente las inversiones de eficiencia energética asociadas a la rehabilitación de viviendas. Este punto de vista trata de ser una herramienta útil para analistas que se inicien en la evaluación económica de inversiones en eficiencia energética. La presente investigación muestra un marco conceptual de la evaluación económica de este tipo de inversiones en viviendas. Como resultado, es posible identificar dos enfoques presentes en los análisis económicos de esta naturaleza: el dinámico y el estático. Ambos métodos contrastan los beneficios (ahorros energéticos) con los costes de las inversiones en el tiempo. Sin embargo, diferencian la oportunidad y el momento en que la inversión debe realizarse dado un escenario de incertidumbre. Esta precisión conceptual permite estudiar varias publicaciones donde se evaluaron diferentes alternativas de reacondicionamiento en viviendas, confirmándose las consideraciones que deben tenerse presentes en momento de realizar la modelación económica: el tipo de enfoque a usar (dinámico o estático) y, en la definición de las alternativas de inversión y escenarios, los aspectos de tiempo, irrevocabilidad e incertidumbre.


2021 ◽  
Vol 246 ◽  
pp. 05004
Author(s):  
Triinu Bergmann ◽  
Aime Ruus ◽  
Kristo Kalbe ◽  
Mihkel Kiviste ◽  
Jiri Tintera

The Energy Performance of Buildings Directive (EPBD) of the EU states that Each Member State shall establish a long-term renovation strategy to support the renovation of building stock into a highly energy efficient and decarbonised building stock by 2050. The motive for the study was the dissatisfaction of inhabitants of a single-family building about the heating costs and thermal discomfort. In this study both the emotional and resource efficiency aspects were considered. The structures and technical systems of the studied small dwelling are typical of representing single-family buildings of the Estonian building stock. The initial purpose was to improve the energy efficiency of a building while preserving the existing load bearing structures as much as possible. The research questions were: 1) what the situation before the renovation was, 2) what solutions can be used, 3) making decisions, whether to renovate or demolish. Calculations were carried out – the thermal transmittance of the envelope structures was calculated based on the construction information, and the linear thermal transmittance of geometrical thermal bridges was calculated by using the software Therm. Field tests performed - the thermography and the air leakage of the building was found by standard blower-door test. Specific air leakage rate qE50=11.1 m3/(hm2) was estimated. A renovation solution was offered considering the need for extra insulation and airtightness. The dwelling energy performance indicator was reduced from the existing 279 kWh/(m2y) to 136 kWh/(m2y). For significant energy efficiency improvement deep renovation measures must be used and the question was whether it is rational. Before making the final decision, several aspects have to be considered: 1) emotional – the demolition or renovation of somebody’s home, 2) environmental aspects and resource-efficiency – the possibilities of the reuse of materials.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2245 ◽  
Author(s):  
Annika K. Jägerbrand

The aim of this review was to map synergies and trade-offs between sustainable development and energy efficiency and savings regarding exterior lighting. Exterior lighting, such as public road and street lighting, requires significant amounts of energy and hinders sustainable development through its increasing of light pollution, ecological impact, and global climate change. Interlinkages between indicators in sustainability and energy that have positive interactions will lead to a mutual reinforcement in the decision-making process, and vice versa, interlinkages between trade-offs may lead to unwanted and conflicting effects. Very few studies have presented a clear vision of how exterior lighting should be contributing to, and not counteracting, the sustainable development of our planet. This study was conducted through a theoretical and systematic analysis that examined the interactions between sustainable development and energy performance based on a framework using indicators and variables, and by reviewing the current literature. Additionally, 17 indicators of energy efficiency and energy savings were identified and used in the analysis. Most interactions between variables for sustainable development and energy performance (52%) were found to be synergistic. The synergistic interactions were mostly found (71%) in the ecological and environmental dimension showing that environmental and ecological sustainability goes hand in hand with energy efficiency and savings. Trade-offs were found only in the economic and social dimensions accounting for 18% of the interactions identified. This review shows that the interactions between sustainable development and energy performance can be used to establish more efficient policies for decision-making processes regarding exterior lighting.


2014 ◽  
Vol 899 ◽  
pp. 3-6 ◽  
Author(s):  
Martin Kamenský ◽  
Anna Vaskova ◽  
Marián Vertaľ

The next step in energy efficiency building design focus on near energy zero buildings. To design such buildings is important to understand how people use low energy building and to find reserves in energy. The paper presents an analysis of reserves in a family house. The analysis is done with simulations of different design and operation solutions based on knowledge from in situ measurements. Results show there are reserves in the heating and cooling period of year, which can lead to further energy savings of up to 15% and internal environment improvements.


2019 ◽  
Vol 14 (3) ◽  
pp. 23-46
Author(s):  
Frida Bazzocchi ◽  
Sara Ticci ◽  
Vincenzo Di Naso ◽  
Andrea Rocchetti

In Italy, a large stock of public housing was built during the 1970s and 1980s with industrialized/prefabricated techniques. These buildings have envelopes characterized by the presence of many thermal bridges and low transmittance values. In addition, they feature inefficient single heating systems in residential units and no cooling/ventilation systems. As a result, these buildings require urgent energy retrofitting actions, and it is therefore necessary to define procedures that will guarantee effective results. The possible interventions must be compatible with building construction techniques as well as be minimally invasive and inexpensive. There are only a limited number of technical solutions, considering that residents should not have to move out during the renovations. In most Italian climatic zones, current interventions are usually linked to external insulation and window replacement, leading to an improvement in energy performance and comfort only during winter. Internal comfort conditions tend to worsen in summer months because seasonal temperatures tend to increase by a few degrees. Therefore, solutions should be proposed that will improve both summer and winter conditions. This work proposes an energy recovery procedure applied to a representative building from the abovementioned period located in the Florence area and constructed with an industrialized system named the “tunnel system” (great panels structure). The procedure used in this study provides for the redevelopment of the envelope and the application of a simple mechanical ventilation system to achieve substantial energy savings and improved indoor comfort conditions.


Author(s):  
Om Taneja

Sustainability goals for buildings are highly acclaimed as public and private sector’s contributions to environmental responsibility, resource efficiency, occupant comfort and well-being. All too often a building’s performance does not meet design expectations, particularly a new building’s energy savings projection that overstates achievable performance. Across the high-performing building industry, these unrealistic energy performance goals have come from, among other things, inadequate modeling and benchmarking practices, unreliable monitoring and equipment controls systems, and significant changes in space usage and tenant improvements. There is still lack of commitment to include operations staff in goal setting and provide adequate budgets for periodic benchmarking, commissioning, and tuning of buildings’ mechanical, electrical and plumbing systems. This paper provides the analytical, performance & prescriptive measures for life cycle assessment of energy efficiency projects which can help in making adaptive changes to buildings systems to suit changing uses, or other internal and external factors that directly or indirectly affect performance.


2020 ◽  
Author(s):  
Rodrigo Chaparro ◽  
Maria Netto ◽  
Patricio Mansilla ◽  
Daniel Magallon

The Energy Savings Insurance Program seeks to promote investment in energy efficiency and distributed generation in Latin America, primarily through small- and medium-sized enterprises (SMEs). It focuses on developing an innovative scheme of guaranteed energy performance that mitigates project risk and generates investor confidence (ESI Model). The Inter-American Development Bank (IDB) facilitates the development of the ESI Program in alliance with the National Development Banks (NDBs). The ESI Model includes a contract for the supply, installation, and maintenance of equipment for generating a stipulated amount of energy or energy savings over a specific time period; validation by an independent body; insurance coverage that backs the savings or the guaranteed energy generation; and project financing. This paper describes the main attributes of the ESI Model (the contract, the insurance, validation and financing), evaluates market potential and the most attractive technologies, and identifies the priority sectors for implementing projects in Chile. The most promising economic sectors were found to be the hospitality industry, food processing industry, grape growing/wine production, and the fishing industry, and the technologies of electric motors, boilers, air conditioning systems and photovoltaic solar generation. In each of these sectors, estimates were made of financing requirements as well as CO2 emission reductions that could be achieved.


1998 ◽  
Vol 78 (4) ◽  
pp. 553-563 ◽  
Author(s):  
R. P. Zentner ◽  
B. G. McConkey ◽  
M. A. Stumborg ◽  
C. A. Campbell ◽  
F. Selles

There is growing interest in the potential for improving nonrenewable energy use efficiency of traditional agricultural production activities in the Canadian prairies. This study, which was conducted on three soil textures in the Brown soil zone of southwestern Saskatchewan, examined the energy performance of conventional tillage (CT), minimum tillage (MT), and no-tillage (NT) management practices for spring wheat grown in fallow-wheat (F–W) and continuous wheat (Cont W) rotations over a 12-yr period (1982–1993). Metabolizable energy output increased with cropping intensity on a silt loam at Swift Current and on a clay at Stewart Valley (average of 16 751 MJ ha–1 for F–W and 24 110 MJ ha−1 for Cont W), but not on a sandy loam at Cantuar (average 14 828 MJ ha−1) where soil water-holding capacity was limited. Further, because grain yield was rarely significantly influenced by tillage method, the latter had little influence on the overall output of metabolizable energy. Total input of nonrenewable energy per unit of rotation also increased with cropping intensity (average 2585 MJ ha−1 for F–W and 5274 MJ ha−1 for Cont W). This was primarily because of the higher rates of N fertilizer that were required with stubble cropping. We found little or no net energy savings with NT management; the F–W (MT) system tended to have the lowest overall nonrenewable energy requirement at all test sites. Although the use of conservation tillage practices provided significant energy savings in fuel and machinery, particularly for F–W systems, these were largely offset by increases in the energy input for herbicides, and higher rates of N fertilizer that were required for NT managed areas. Consequently, net energy produced (energy output minus energy input) had similar patterns as metabolizable energy output. In contrast, when efficiency was expressed as ratios of energy output to energy input, or quantity of wheat produced per unit of energy input, the values were higher for F–W (average 6.2 and 456 kg GJ−1, respectively) than for Cont W systems (average 3.8 and 278 kg GJ−1, respectively). These measures of energy efficiency also tended to be higher for CT and MT than for NT management on the medium- and fine-textured soils, but on the coarse-textured soil, tillage had no influence on the energy efficiency of the cropping systems. We concluded that the potential for achieving energy savings by adopting conservation tillage management for monoculture wheat rotations is low in this semiarid region. This was because of the lack of consistent yield advantages with MT and NT, and due to the few tillage operations that are traditionally used to control weeds on summerfllow areas and to prepare the seedbed with CT management. Key words: Wheat, minimum tillage, no-tillage, nonrenewable energy, energy output/input, energy efficiency


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Naim Jabbour

Data shows residential energy consumption constituting a significant portion of the overall energy end use in the European Union (EU), ranging between 15% and 30%. Furthermore, the EU’s dependency on foreign fossil fuel-based energy imports has been steadily increasing since 1993, constituting approximately 60% of its primary energy. This paper provides an analytical re-view of diverse residential building/energy policies in targeted EU countries, to shed insight on the impact of such policies and measures on energy use and efficiency trends. Accordingly, the adoption of robust residential green and energy efficient building policies in the EU has increased in the past decade. Moreover, data from EU energy efficiency and consumption databases attributes 44% of total energy savings since 2000 to energy upgrades and improvements within the residential sector. Consequently, many EU countries and organizations are continuously evaluating residential building energy consumption patterns to increase the sec-tor’s overall energy performance. To that end, energy efficiency gains in EU households were measured at 1% in 2000 compared to 27.8% in 2016, a 2600% increase. Accordingly, 36 policies have been implemented successfully since 1991 across the EU targeting improvements in residential energy efficiency and reductions in energy use. Moreover, the adoption of National Energy Efficiency Actions Plans (NEEACP) across the EU have been a major driver of energy savings and energy efficiency. Most energy efficiency plans have followed a holistic multi-dimensional approach targeting the following areas, legislative actions, financial incentives, fiscal tax exemptions, and public education and awareness programs and campaigns. These measures and policy instruments have cumulatively generated significant energy savings and measurable improvements in energy performance across the EU since their inception. As a result, EU residential energy consumption trends show a consistent decrease over the past decade. The purpose of this analysis is to explore, examine, and compare the various green building and energy-related policies in the EU, highlighting some of the more robust and progressive aspects of such policies. The paper will also analyze the multiple policies and guidelines across targeted European nations. Lastly, the study will assess the status of green residential building policies in Lebanon, drawing from the comprehensive European measures, in order to recommend a comprehensive set of guidelines to advance energy policies and building practices in the country. Keywords: Building Policies; Residential Energy Patterns; Residential Energy Consumption; Energy Savings


Sign in / Sign up

Export Citation Format

Share Document