scholarly journals Effect of Roof Tile Colour on Heat Conduction Transfer, Roof-Top Surface Temperature and Cooling Load in Modern Residential Buildings under the Tropical Climate of Malaysia

2021 ◽  
Vol 13 (9) ◽  
pp. 4665
Author(s):  
Syed Ahmad Farhan ◽  
Fouad Ismail Ismail ◽  
Osamah Kiwan ◽  
Nasir Shafiq ◽  
Azni Zain-Ahmed ◽  
...  

Modern residential roofs in Malaysia mainly employ red and brown roof tiles due to aesthetic factors and the ability of the roof surface to reflect or retard heat transfer is typically not considered the main priority. The present article reveals the findings of a study on the effect of roof tile colour on heat conduction transfer through roof tiles and ceiling boards, roof-top surface temperature and cooling load. Findings suggest that the selection of white roof tiles significantly reduces the peaks of heat conduction transfer and roof-top surface temperature as well as the values of heat conduction transfer and roof-top surface temperature throughout diurnal profiles, which consequently reduces hours of indoor thermal discomfort and use of air-conditioners in indoor spaces. A decline in peak roof-top surface temperature of up to 16.00 °C that results in annual energy savings of up to 13.14% can be achieved when the roof tile colour is changed from red to white. Further research on the development of solar-reflective paint or coating products that can significantly increase the solar reflectance values of non-white roof tiles are essential to overcome issues related to maintenance difficulties and lack of preference among house buyers towards white roof tiles.

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Salah M Alabani ◽  
Ibrahim H Tawil

The residential sector in Libya has grown over the past decade in the construction of residential buildings due to the increase in the population. Moreover, the increase in the level of income has contributed to the increase in the purchase of household appliances, which leads to increased demand for energy. Energy consumption in the household sector accounted for 31% of total energy consumption during 2010, and the share of air conditioners in this sector consumed 18.35%. To reduce energy consumption and improve energy efficiency in this sector, policies should be considered to apply energy efficiency standards and markers to household electrical appliances, as they are considered one of the most successful programs used in the world. Countries are implementing such programs to reduce energy consumption in the domestic sector. This paper presents the possibility of implementing such programs to introduce the importance of energy efficiency standards and labeling programs for home appliances in Libya. The calculations required to design such programs show the energy savings that can be achieved during cooling loads in the summer period of 4 months July, August, September). A strategic plan has been developed during 10-year (2020-2030) to estimate the expected savings of energy consumed and to identify possible obstacles and difficulties by gradually increasing the energy efficiency ratio for comestic air conditioners in two stages, from EER10 to EER11 in the first stage is then raised to EER12 as the second stage.


Author(s):  
Hua Chen ◽  
Qianqian Di

To improve the applicability of water-cooled air-conditioners in the domestic sector, the development of a prediction model for energy performance analysis is needed. This paper addressed the development of an empirical model for predicting the operation performance and the annual energy consumption for the use of water-cooled air-conditioners. An experimental prototype was set up and tested in an environmental chamber in validating the empirical model. The predictions compared well with the experimental results. Furthermore, a high-rise residential building whole-year energy consumption simulation on applications of water-cooled air conditioners in South china was also analyzed. The results show 20.4% energy savings over air-cooled units while the increase in water-side consumption is 31.1%. The overall energy savings were estimated at 16.2% when including the additional water costs.


2019 ◽  
Vol 29 (2) ◽  
pp. 151-162 ◽  
Author(s):  
Jie Gao ◽  
Haichao Wang ◽  
Xiaozhou Wu ◽  
Fenghao Wang ◽  
Zhen Tian

An underfloor air distribution (UFAD) system integrated with a chilled ceiling (CC) cooling system may be a potential advanced heating, ventilation and air conditioning system in modern non-residential buildings with high sensible cooling loads. This article presents an experimental study concerning the effect of ceiling surface temperature and supply air velocity on the indoor air distribution in a room with UFAD as the internal and external sensible cooling loads change. The vertical distributions of indoor air temperature, air velocity and contaminant (CO2) concentration were evaluated by vertical air temperature difference (VATD), turbulence intensity (TI) and contaminant removal effectiveness (CRE), respectively. The results showed that the average VATD, TI and CRE levels were 0.5°C–1.0°C, 31%–41% and 0.85–1.06 when both internal and external sensible cooling loads were 41.5 W/m2. These evaluation indices varied clearly when the external sensible cooling load increased from 41.5 W/m2 to 69.5 W/m2, whereas they remained almost the same when the internal sensible cooling load increased from 41.5 W/m2 to 69.5 W/m2. The maximum TI coincided with the minimum CRE under the condition of a constant sensible cooling load. Moreover, an air diffusion performance index clearly reduced with an increase in the heat removal effectiveness. It is recommended that it is important to balance the indoor air quality and energy consumption in a room with UFAD + CC.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2729
Author(s):  
Tiago Souto ◽  
Margarida Almeida ◽  
Vítor Leal ◽  
João Machado ◽  
Adélio Mendes

This work addresses the effect of the total solar reflectance (TSR) value of paints applied in residential buildings upon their thermal performance. A semi-detached residential building was modeled in the ESP-r software, and taken as the basis for parametric studies which assessed the effects of variations in (i) the TSR values; (ii) the thermal characteristics of the building envelope; (iii) the location/climate; and: (iv) the way how the indoor temperature is controlled. The parametric studies were used to find optimal TSR values for each combination of Location + Building envelope characteristics (mainly the existence of thermal insulation). It was concluded that paints having a carefully chosen TSR value lead to better indoor thermal temperatures if the buildings have no mechanical heating or cooling, or to energy savings of up to 32% if they do.


Author(s):  
Junaidah Jailani ◽  
◽  
Norsyalifa Mohamad ◽  
Muhammad Amirul Omar ◽  
Hauashdh Ali ◽  
...  

According to the National Energy Balance report released by the Energy Commission of Malaysia in 2016, the residential sector uses 21.6% of the total energy in Malaysia. Residents waste energy through inefficient energy consumption and a lack of awareness. Building occupants are considered the main factor that influences energy consumption in buildings, and to change energy consumption on an overall scale, it is crucial to change individual behaviour. Therefore, this study focused on analysing the energy consumption pattern and the behaviour of consumers towards energy consumption in their homes in the residential area of Batu Pahat, Johor. A self-administrated questionnaire approach was employed in this study. The findings of this study showed that the excessive use of air conditioners was a significant factor in the increasing electricity bills of homeowners as well as the inefficient use of electrical appliances. Also, this study determined the effect of awareness on consumer behaviour. This study recommends ways to help minimise energy consumption in the residential area.


2021 ◽  
Vol 6 (6) ◽  
pp. 79
Author(s):  
Nuno M. M. Ramos ◽  
Joana Maia ◽  
Andrea R. Souza ◽  
Ricardo M. S. F. Almeida ◽  
Luís Silva

Near-infrared (NIR) reflective materials are being developed for mitigating building cooling needs. Their use contributes to broadening the range of colours, responding to the urban aesthetic demand without compromising the building performance. Despite the increase in NIR reflective pigments investigation, there is still a knowledge gap in their applicability, impact, and durability in multilayer finishing coatings of External Thermal Insulation Composite Systems (ETICS). Hence, the main goal of this work consists of evaluating the impact of incorporating NIR reflective pigments (NRP) in the solar reflectance of the surface layer of ETICS, without affecting the colour perception, as well as their influence on the colour durability and surface temperature. As such, colour, solar reflectance, and surface temperature were monitored for 2 years in dark-coloured specimens of ETICS, with and without NRP and a primer layer. It was confirmed that the main contribution of NRP is the increase of solar reflectance and, consequently, the decrease in surface temperature, especially for high exterior temperatures (around 30 ºC). Moreover, these pigments highly increase the NIR reflectance without affecting the visible colour. In addition, they contribute to maintaining the colour characteristics. The application of primer increased the surface temperature, especially for higher exterior temperatures. However, it contributes to a lower colour difference and solar reflectance variation, which is an important achievement for durability purposes.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


2021 ◽  
Vol 13 (15) ◽  
pp. 8595
Author(s):  
Lindita Bande ◽  
Abeer Alshamsi ◽  
Anoud Alhefeiti ◽  
Sarah Alderei ◽  
Sebah Shaban ◽  
...  

The city of Al Ain (Abu Dhabi, UAE) has a mainly low rise residential buildings. Villas as part of a compound or separate units represent the majority of the residential areas in the city. Due to the harsh hot arid climate of Al Ain, the energy demand for the cooling load is quite high. Therefore, it is relevant finding new retrofit strategies that are efficient in reducing the cooling load of the villas. The aim of this study is to analyze one particular strategy (parametric shading structure) in terms of design, construction, cost, energy impact on the selected villa. The main data for this study is taken from the local sources. There are six steps followed in this analysis: case study analysis; climate analysis; parametric structure and PV panels; building energy consumption and outdoor thermal comfort; modelling, simulation, and validation; materials, construction, and cost evaluation. The model of the villa was validated for the full year 2020 based on the electricity bills obtained. After adding the parametric design structure, the reduction after shading is approximately 10%. Meanwhile the UTCI (Universal Thermal Climate Index) dropped from extreme heat stress to strong heat stress (average for the month of March and September). These findings are promising in the retrofit industry due to the advanced calculations used to optimize the parametric design structure.


Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


Sign in / Sign up

Export Citation Format

Share Document