scholarly journals Management to Support Multiple Ecosystem Services from Productive Grasslands

2021 ◽  
Vol 13 (11) ◽  
pp. 6263
Author(s):  
Joanna Savage ◽  
Ben A. Woodcock ◽  
James M. Bullock ◽  
Marek Nowakowski ◽  
Jeremy R. B. Tallowin ◽  
...  

Sustainable intensification will require the development of new management systems to support global food demands, whilst conserving the integrity of ecosystem functions. Here, we test and identify management strategies to maintain or enhance agricultural production in grasslands whilst simultaneously supporting the provision of multiple ecosystem services. Over four years, we investigated how the establishment of three plant functional groups (grasses, legumes, and other flowering forbs), using different cultivation (minimum tillage and deep ploughing) and management (cutting, grazing and their intensity) techniques, affected provision and complementarity between key ecosystem services. These ecosystem services were agronomic production, pollination, pest control, food resources for farmland birds, and soil services. We found that the establishment of floristically diverse swards, particularly those containing grasses, legumes and forbs, maximised forage yield and quality, pollinator abundance, soil nitrogen, and bird food resources, as well as enhancing populations of natural predators of pests. Cutting management increased bird food resources and natural predators of pests without depleting other services considered. However, a single management solution to maximise the delivery of all ecosystem services is unlikely to exist, as trade-offs also occurred. Consequently, management options may need to be tailored to strategically support localised deficits in key ecosystem services.

2014 ◽  
Vol 18 (8) ◽  
pp. 3259-3277 ◽  
Author(s):  
A. P. Hurford ◽  
J. J. Harou

Abstract. Competition for water between key economic sectors and the environment means agreeing allocations is challenging. Managing releases from the three major dams in Kenya's Tana River basin with its 4.4 million inhabitants, 567 MW of installed hydropower capacity, 33 000 ha of irrigation and ecologically important wetlands and forests is a pertinent example. This research seeks firstly to identify and help decision-makers visualise reservoir management strategies which result in the best possible (Pareto-optimal) allocation of benefits between sectors. Secondly, it seeks to show how trade-offs between achievable benefits shift with the implementation of proposed new rice, cotton and biofuel irrigation projects. To approximate the Pareto-optimal trade-offs we link a water resources management simulation model to a multi-criteria search algorithm. The decisions or "levers" of the management problem are volume-dependent release rules for the three major dams and extent of investment in new irrigation schemes. These decisions are optimised for eight objectives covering the provision of water supply and irrigation, energy generation and maintenance of ecosystem services. Trade-off plots allow decision-makers to assess multi-reservoir rule-sets and irrigation investment options by visualising their impacts on different beneficiaries. Results quantify how economic gains from proposed irrigation schemes trade-off against the disturbance of ecosystems and local livelihoods that depend on them. Full implementation of the proposed schemes is shown to come at a high environmental and social cost. The clarity and comprehensiveness of "best-case" trade-off analysis is a useful vantage point from which to tackle the interdependence and complexity of "water-energy-food nexus" resource security issues.


2020 ◽  
Author(s):  
Xiaofeng Wang

<p>As an important means regulating the relationship between human and natural ecosystem, ecological restoration program plays a key role in restoring ecosystem functions. The Grain-for-Green Program (GFGP, One of the world’s most ambitious ecosystem conservation set-aside programs aims to transfer farmland on steep slopes to forestland or grassland to increase vegetation coverage) has been widely implemented from 1999 to 2015 and exerted significant influence on land use and ecosystem services (ESs). In this study, three ecological models (InVEST, RUSLE, and CASA) were used to accurately calculate the three key types of ESs, water yield (WY), soil conservation (SC), and net primary production (NPP) in Karst area of southwestern China from 1982 to 2015. The impact of GFGP on ESs and trade-offs was analyzed. It provides practical guidance in carrying out ecological regulation in Karst area of China under global climate change. Results showed that ESs and trade-offs had changed dramatically driven by GFGP . In detail, temporally, SC and NPP exhibited an increasing trend, while WY exhibited a decreasing trend. Spatially, SC basically decreased from west to east; NPP basically increased from north to south; WY basically increased from west to east; NPP and SC, SC and WY developed in the direction of trade-offs driven by the GFGP, while NPP and WY developed in the direction of synergy. Therefore, future ecosystem management and restoration policy-making should consider trade-offs of ESs so as to achieve sustainable provision of ESs.</p>


2013 ◽  
Vol 28 (2) ◽  
pp. 102-114 ◽  
Author(s):  
R. Lal

AbstractEcosystem functions and services provided by soils depend on land use and management. The objective of this article is to review and synthesize relevant information on the impacts of no-till (NT) management of croplands on ecosystem functions and services. Sustainable management of soil through NT involves: (i) replacing what is removed, (ii) restoring what has been degraded, and (iii) minimizing on-site and off-site effects. Despite its merits, NT is adopted on merely ∼9% of the 1.5 billion ha of global arable land area. Soil's ecosystem services depend on the natural capital (soil organic matter and clay contents, soil depth and water retention capacity) and its management. Soil management in various agro-ecosystems to enhance food production has some trade-offs/disservices (i.e., decline in biodiversity, accelerated erosion and non-point source pollution), which must be minimized by further developing agricultural complexity to mimic natural ecosystems. However, adoption of NT accentuates many ecosystem services: carbon sequestration, biodiversity, elemental cycling, and resilience to natural and anthropogenic perturbations, all of which can affect food security. Links exist among diverse ecosystem services, such that managing one can adversely impact others. For example, increasing agronomic production can reduce biodiversity and deplete soil organic carbon (SOC), harvesting crop residues for cellulosic ethanol can reduce SOC, etc. Undervaluing ecosystem services can jeopardize finite soil resources and aggravate disservices. Adoption of recommended management practices can be promoted through payments for ecosystem services by a market-based approach so that risks of disservices and negative costs can be reduced either through direct economic incentives or as performance payments.


2021 ◽  
Vol 13 (19) ◽  
pp. 10649
Author(s):  
Jian Zhang ◽  
Hengxing Xiang ◽  
Shizuka Hashimoto ◽  
Toshiya Okuro

Understanding how observational scale affects the interactions and spatial distributions of ecosystem services is important for effective ecosystem assessment and management. We conducted a case study in the Ussuri watershed, Northeast China, to explore how observational scale (1 km to 15 km grid resolution) influences the correlations and spatial distributions of ecosystem services. Four ecosystem services of particular importance for the sustainable development of the study area were examined: carbon sequestration, habitat provision, soil retention, and water retention. Across the observational scales examined, trade-offs and synergies of extensively distributed ecosystem services were more likely to be robust compared with those of sparsely distributed ecosystem services, and hot/cold-spots of ecosystem services were more likely to persist when associated with large rather than small land-cover patches. Our analysis suggests that a dual-purpose strategy is the most appropriate for the management of carbon sequestration and habitat provision, and cross-scale management strategies are the most appropriate for the management of soil retention and water retention in the study area. Further studies to deepen our understanding of local landscape patterns will help determine the most appropriate observational scale for analyzing the spatial distributions of these ecosystem services.


2013 ◽  
Vol 28 (2) ◽  
pp. 129-144 ◽  
Author(s):  
Matt A. Sanderson ◽  
David Archer ◽  
John Hendrickson ◽  
Scott Kronberg ◽  
Mark Liebig ◽  
...  

AbstractConservation agricultural systems rely on three principles to enhance ecosystem services: (1) minimizing soil disturbance, (2) maximizing soil surface cover and (3) stimulating biological activity. In this paper, we explore the concept of diversity and its role in maximizing ecosystem services from managed grasslands and integrated agricultural systems (i.e., integrated crop–livestock–forage systems) at the field and farm level. We also examine trade-offs that may be involved in realizing greater ecosystem services. Previous research on livestock production systems, particularly in pastureland, has shown improvements in herbage productivity and reduced weed invasion with increased forage diversity but little response in terms of animal production. Managing forage diversity in pastureland requires new tools to guide the selection and placement of plant mixtures across a farm according to site suitability and the goals of the producer. Integrated agricultural systems embrace the concept of dynamic cropping systems, which incorporates a long-term strategy of annual crop sequencing that optimizes crop and soil use options to attain production, economic and resource conservation goals by using sound ecological management principles. Integrating dynamic cropping systems with livestock production increases the complexity of management, but also creates synergies among system components that may improve resilience and sustainability while fulfilling multiple ecosystem functions. Diversified conservation agricultural systems can sustain crop and livestock production and provide additional ecosystem services such as soil C storage, efficient nutrient cycling and conservation of biodiversity.


2018 ◽  
Vol 10 (12) ◽  
pp. 4376 ◽  
Author(s):  
Lorena Peña ◽  
Miren Onaindia ◽  
Beatriz Fernández de Manuel ◽  
Ibone Ametzaga-Arregi ◽  
Izaskun Casado-Arzuaga

In the last decades, some European cities have undergone important changes in search of a more sustainable development. This is the case for the city of Bilbao (Bizkaia, Basque Country), where a Greenbelt has been maintained surrounding the urban areas allowing the periurban areas to deliver ecosystem services (ES) to society. However, the role of the different ecosystems in the provision of ES is not the same, which can lead to conflicts among them. The aim of this study is to analyze the synergies and trade-offs among the eight most important ES in the Bilbao Metropolitan Greenbelt (BMG) to orient their management strategies towards more multifunctional landscapes. We mapped the ES and overlapped them looking for the most relevant areas for the provision of multiple ES and areas that are mostly lacking ES provision. We identify also existing ES trade-offs and synergies between ES using correlations so that managers can prioritize preservation efforts of land use types in the rest of the area. The results show that provisioning ES had trade-offs with regulating and cultural ES and the latter showed synergies between them. The former are mainly delivered by semi-natural ecosystems, while regulating and cultural ES are delivered mainly by natural ecosystems. Moreover, the most relevant areas for the provision of multiple ES were proposed as potential components of a Green Infrastructure (GI). Their identification and ES bundles could help decision-makers to orient their management strategies towards sustainability in metropolitan areas.


Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 379
Author(s):  
Hongmi Koo ◽  
Janina Kleemann ◽  
Christine Fürst

In West Africa, where the majority of the population relies on natural resources and rain-fed agriculture, regionally adapted agricultural land-use planning is increasingly important to cope with growing demand for land-use products and intensifying climate variability. As an approach to identify effective future land-use strategies, this study applied spatially explicit modeling that addresses the spatial connectivity between the provision of ecosystem services and agricultural land-use systems. Considering that the status of ecosystem services varies with the perception of stakeholders, local knowledge, and characteristics of a case study area, two adjoining districts in northern Ghana were integrated into an assessment process of land-use strategies. Based on agricultural land-management options that were identified together with the local stakeholders, 75 future land-use strategies as combinations of multiple agricultural practices were elaborated. Potential impacts of the developed land-use strategies on ecosystem services and land-use patterns were assessed in a modeling platform that combines Geographic Information System (GIS) and Cellular Automaton (CA) modules. Modeled results were used to identify best land-use strategies that could deliver multiple ecosystem services most effectively. Then, local perception was applied to determine the feasibility of the best land-use strategies in practice. The results presented the different extent of trade-offs and synergies between ecosystem services delivered by future land-use strategies and their different feasibility depending on the district. Apart from the fact that findings were context-specific and scale-dependent, this study revealed that the integration of different local characteristics and local perceptions to spatially explicit ecosystem service assessment is beneficial for determining locally tailored recommendations for future agricultural land-use planning.


2020 ◽  
Vol 6 (5) ◽  
pp. eaax7712 ◽  
Author(s):  
Carola Paul ◽  
Nick Hanley ◽  
Sebastian T. Meyer ◽  
Christine Fürst ◽  
Wolfgang W. Weisser ◽  
...  

Biodiversity’s contribution to human welfare has become a key argument for maintaining and enhancing biodiversity in managed ecosystems. The functional relationship between biodiversity (b) and economic value (V) is, however, insufficiently understood, despite the premise of a positive-concave bV relationship that dominates scientific and political arenas. Here, we review how individual links between biodiversity, ecosystem functions (F), and services affect resulting bV relationships. Our findings show that bV relationships are more variable, also taking negative-concave/convex or strictly concave and convex forms. This functional form is driven not only by the underlying bF relationship but also by the number and type of ecosystem services and their potential trade-offs considered, the effects of inputs, and the type of utility function used to represent human preferences. Explicitly accounting for these aspects will enhance the substance and coverage of future valuation studies and allow more nuanced conclusions, particularly for managed ecosystems.


2020 ◽  
Vol 12 (10) ◽  
pp. 4089 ◽  
Author(s):  
Jeannette Eggers ◽  
Ylva Melin ◽  
Johanna Lundström ◽  
Dan Bergström ◽  
Karin Öhman

Bioenergy is expected to contribute to mitigating climate change. One major source for bioenergy is woody biomass from forests, including logging residues, stumps, and whole trees from young dense stands. However, at increased extraction rates of woody biomass, the forest ecosystem, its biodiversity, and its ability to contribute to fundamental ecosystem services will be affected. We used simulation and optimization techniques to assess the impact of different management strategies on the supply of bioenergy and the trade-offs between wood fuel harvesting, biodiversity, and three other ecosystem services—reindeer husbandry, carbon storage, and recreation. The projections covered 100 years and a forest area of 3 million ha in northern Sweden. We found that the development of novel and cost-effective management systems for biomass outtake from young dense stands may provide options for a significant supply of bioenergy to the emerging bioeconomy, while at the same time securing biodiversity and important ecosystem values in future stand developments. In addition, there is potential to increase the extraction of harvest residues and stumps while simultaneously improving conditions for biodiversity and the amount of carbon stored in forest ecosystems compared to current levels. However, the projected continuing trend of increased forest density (in terms of basal area) has a negative impact on the potential for reindeer husbandry and recreation, which calls for researching new management strategies on landscape levels.


2020 ◽  
Author(s):  
Nilo Lima ◽  
Hector Angarita ◽  
Marisa Escobar-Arias ◽  
Wilford Rincon ◽  
Sergio Nuñez ◽  
...  

<p>In Bolivia, since 2006 the Ministry of Environment and Water, through the National Watershed Plan, has developed the conceptual framework and national policy for Watershed Management. At present, this national policy is still in the process of learning and construction from its application in various river basins, principally through the development of Watershed Master Plans.</p><p>Three principles guide the development of this national planning effort: i. the recognition of the growing dependence on participatory processes as a forum to identify and enable legitimate water management and governance options, ii. the need to plan for an uncertain future caused by climate change and other societal prerogatives iii. the systemic analysis of the territory incorporating biophysical, sectoral and regional interactions.</p><p>Here we present results and lessons learned of this process in the formulation of the Master Plan of the Río Rocha Basin (PDCR); With a population of ~ 1,500,000 people (13% of Bolivia’s population), the basin has high levels of water scarcity that feed an intricate network of conflicts related to access, governance, and environmental degradation. The PDCR is a planning opportunity to enable the necessary conditions to resolve current conflicts and set the foundation of sustainable water management.</p><p>Robust decision support (RDS) has been adopted as a guiding framework, constructing a participatory process that considers uncertainties and strategies within an array of management options for the system. To accommodate the large disparities in water access across interests represented at different regions and scales of the Rio Rocha Basin, we implemented two innovations in the RDS process: first, a set of 24 quantitative indices that can operate at several nested scales of planning sub-units (i.e. from independent irrigation units or household water supply service areas, to the entire river basin), and second the use of an interactive “hard-coupled” decision dashboard to the Water Evaluation and Planning System (WEAP). In combination, this innovations enabled a diverse audience of actors to: i) explore the positive and negative interactions of water management, production systems, hazards and risks management, and ecosystem functions ii) identify disparities in the performance of a proposed plan between scales and ii) analyze and compare different management strategies interactively to improve outcomes and identify and mitigate emerging regional or sectorial conflicts.</p><p>As a result, the PDCR established a set of regional and intersectoral actions for 2025 and 2040, which integrate infrastructure, efficiency, pollution control, and territorial and productive planning actions, accompanied by institutional strengthening and capacity development measures. The plan expects to increase access and coverage of the demand for safe water, improve irrigation access, enable long term sustainable exploitation of groundwater and establish synergies with the existing sanitation plan to achieve additional improvements in the environmental quality of the Rio Rocha.</p>


Sign in / Sign up

Export Citation Format

Share Document