scholarly journals Projection of Water Availability and Sustainability in Nigeria Due to Climate Change

2021 ◽  
Vol 13 (11) ◽  
pp. 6284
Author(s):  
Mohammed Sanusi Shiru ◽  
Shamsuddin Shahid ◽  
Inhwan Park

This study projects water availability and sustainability in Nigeria due to climate change. This study used Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage data (TWS), Global Precipitation Climatology Center (GPCC) precipitation data and Climate Research Unit (CRU) temperature data. Four general circulation models (GCMs) of the Coupled Model Intercomparison Project 5 were downscaled using the best of four downscaling methods. Two machine learning (ML) models, RF and SVM, were developed to simulate GRACE TWS data for the period 2002–2016 and were then used for the projection of spatiotemporal changes in TWS. The projected TWS data were used to assess the spatiotemporal changes in water availability and sustainability based on the reliability–resiliency–vulnerability (RRV) concept. This study revealed that linear scaling was the best for downscaling over Nigeria. RF had better performance than SVM in modeling TWS for the study area. This study also revealed there would be decreases in water storage during the wet season (June–September) and increases in the dry season (January–May). Decreases in projected water availability were in the range of 0–12 mm for the periods 2010–2039, 2040–2069, and 2070–2099 under RCP2.6 and in the range of 0–17 mm under RCP8.5 during the wet season. Spatially, annual changes in water storage are expected to increase in the northern part and decrease in the south, particularly in the country’s southeast. Groundwater sustainability was higher during the period 2070–2099 under all RCPs compared to the other periods and this can be attributed to the expected increases in rainfall during this period.

2015 ◽  
Vol 12 (1) ◽  
pp. 671-704 ◽  
Author(s):  
G. Martins ◽  
C. von Randow ◽  
G. Sampaio ◽  
A. J. Dolman

Abstract. Studies on numerical modeling in Amazonia show that the models fail to capture important aspects of climate variability in this region and it is important to understand the reasons that cause this drawback. Here, we study how the general circulation models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulate the inter-relations between regional precipitation, moisture convergence and Sea Surface Temperature (SST) in the adjacent oceans, to assess how flaws in the representation of these processes can translate into biases in simulated rainfall in Amazonia. Using observational data (GPCP, CMAP, ERSST.v3, ERAI and evapotranspiration) and 21 numerical simulations from CMIP5 during the present climate (1979–2005) in June, July and August (JJA) and December, January and February (DJF), respectively, to represent dry and wet season characteristics, we evaluate how the models simulate precipitation, moisture transport and convergence, and pressure velocity (omega) in different regions of Amazonia. Thus, it is possible to identify areas of Amazonia that are more or less influenced by adjacent ocean SSTs. Our results showed that most of the CMIP5 models have poor skill in adequately representing the observed data. The regional analysis of the variables used showed that the underestimation in the dry season (JJA) was twice in relation to rainy season as quantified by the Standard Error of the Mean (SEM). It was found that Atlantic and Pacific SSTs modulate the northern sector of Amazonia during JJA, while in DJF Pacific SST only influences the eastern sector of the region. The analysis of moisture transport in JJA showed that moisture preferentially enters Amazonia via its eastern edge. In DJF this occurs both via its northern and eastern edge. The moisture balance is always positive, which indicates that Amazonia is a source of moisture to the atmosphere. Additionally, our results showed that during DJF the simulations in northeast sector of Amazonia have a strong bias in precipitation and an underestimation of moisture convergence due to the higher influence of biases in the Pacific SST. During JJA, a strong precipitation bias was observed in the southwest sector associated, also with a negative bias of moisture convergence, but with weaker influence of SSTs of adjacent oceans. The poor representation of precipitation-producing systems in Amazonia by the models and the difficulty of adequately representing the variability of SSTs in the Pacific and Atlantic oceans may be responsible for these underestimates in Amazonia.


2019 ◽  
Vol 12 (8) ◽  
pp. 3725-3743 ◽  
Author(s):  
Allison C. Michaelis ◽  
Gary M. Lackmann ◽  
Walter A. Robinson

Abstract. We present multi-seasonal simulations representative of present-day and future environments using the global Model for Prediction Across Scales – Atmosphere (MPAS-A) version 5.1 with high resolution (15 km) throughout the Northern Hemisphere. We select 10 simulation years with varying phases of El Niño–Southern Oscillation (ENSO) and integrate each for 14.5 months. We use analyzed sea surface temperature (SST) patterns for present-day simulations. For the future climate simulations, we alter present-day SSTs by applying monthly-averaged temperature changes derived from a 20-member ensemble of Coupled Model Intercomparison Project phase 5 (CMIP5) general circulation models (GCMs) following the Representative Concentration Pathway (RCP) 8.5 emissions scenario. Daily sea ice fields, obtained from the monthly-averaged CMIP5 ensemble mean sea ice, are used for present-day and future simulations. The present-day simulations provide a reasonable reproduction of large-scale atmospheric features in the Northern Hemisphere such as the wintertime midlatitude storm tracks, upper-tropospheric jets, and maritime sea-level pressure features as well as annual precipitation patterns across the tropics. The simulations also adequately represent tropical cyclone (TC) characteristics such as strength, spatial distribution, and seasonal cycles for most Northern Hemisphere basins. These results demonstrate the applicability of these model simulations for future studies examining climate change effects on various Northern Hemisphere phenomena, and, more generally, the utility of MPAS-A for studying climate change at spatial scales generally unachievable in GCMs.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Vimal Mishra ◽  
Udit Bhatia ◽  
Amar Deep Tiwari

Abstract Climate change is likely to pose enormous challenges for agriculture, water resources, infrastructure, and livelihood of millions of people living in South Asia. Here, we develop daily bias-corrected data of precipitation, maximum and minimum temperatures at 0.25° spatial resolution for South Asia (India, Pakistan, Bangladesh, Nepal, Bhutan, and Sri Lanka) and 18 river basins located in the Indian sub-continent. The bias-corrected dataset is developed using Empirical Quantile Mapping (EQM) for the historic (1951–2014) and projected (2015–2100) climate for the four scenarios (SSP126, SSP245, SSP370, SSP585) using output from 13 General Circulation Models (GCMs) from Coupled Model Intercomparison Project-6 (CMIP6). The bias-corrected dataset was evaluated against the observations for both mean and extremes of precipitation, maximum and minimum temperatures. Bias corrected projections from 13 CMIP6-GCMs project a warmer (3–5°C) and wetter (13–30%) climate in South Asia in the 21st century. The bias-corrected projections from CMIP6-GCMs can be used for climate change impact assessment in South Asia and hydrologic impact assessment in the sub-continental river basins.


2018 ◽  
Vol 10 (1) ◽  
pp. 78-88 ◽  
Author(s):  
Jian Sha ◽  
Zhong-Liang Wang ◽  
Yue Zhao ◽  
Yan-Xue Xu ◽  
Xue Li

Abstract The vulnerability of the natural water system in cold areas to future climate change is of great concern. A coupled model approach was applied in the headwater watershed area of Yalu River in the northeastern part of China to estimate the response of hydrological processes to future climate change with moderate data. The stochastic Long Ashton Research Station Weather Generator was used to downscale the results of general circulation models to generate synthetic daily weather series in the 2050s and 2080s under various projected scenarios, which were applied as input data of the Generalized Watershed Loading Functions hydrological model for future hydrological process estimations. The results showed that future wetter and hotter weather conditions would have positive impacts on the watershed runoff yields but negative impacts on the watershed groundwater flow yields. The freezing period in winter would be shortened with earlier snowmelt peaks in spring. These would result in less snow cover in winter and shift the monthly allocations of streamflow with more yields in March but less in April and May, which should be of great concern for future local management. The proposed approach of the coupled model application is effective and can be used in other similar areas.


2016 ◽  
Vol 55 (3) ◽  
pp. 773-789
Author(s):  
Soojun Kim ◽  
Jaewon Kwak ◽  
Hung Soo Kim ◽  
Younghun Jung ◽  
Gilho Kim

AbstractThe spatial and temporal resolution of readily available climate change projections from general circulation models (GCM) has limited applicability. Consequently, several downscaling methods have been developed. These methods predominantly focus on a single meteorological series at specific sites. Spatial and temporal correlation of the precipitation and temperature fields is important for hydrologic applications. This research uses a nearest neighbor–genetic algorithm (NN–GA) method to analyze the Namhan River basin in the Korean Peninsula. Using the simulation results of the CNRM-CM for the RCP 8.5 climate change scenario, archived in the fifth phase of the Coupled Model Intercomparison Project (CMIP5), the GCM projections are downscaled through the NN–GA. The NN–GA simulations reproduce the features of the observed series in terms of site statistics as well as across variables and sites.


2021 ◽  
Vol 13 (18) ◽  
pp. 10102
Author(s):  
Jian Sha ◽  
Xue Li ◽  
Jingjing Yang

The impacts of future climate changes on watershed hydrochemical processes were assessed based on the newest Shared Socioeconomic Pathways (SSP) scenarios in Coupled Model Intercomparison Project Phase 6 (CMIP6) in the Tianhe River in the middle area of China. The monthly spatial downscaled outputs of General Circulation Models (GCMs) were used, and a new Python procedure was developed to batch pick up site-scale climate change information. A combined modeling approach was proposed to estimate the responses of the streamflow and Total Dissolved Nitrogen (TDN) fluxes to four climate change scenarios during four future periods. The Long Ashton Research Station Weather Generator (LARS-WG) was used to generate synthetic daily weather series, which were further used in the Regional Nutrient Management (ReNuMa) model for scenario analyses of watershed hydrochemical process responses. The results showed that there would be 2–3% decreases in annual streamflow by the end of this century for most scenarios except SSP 1-26. More streamflow is expected in the summer months, responding to most climate change scenarios. The annual TDN fluxes would continue to increase in the future under the uncontrolled climate scenarios, with more non-point source contributions during the high-flow periods in the summer. The intensities of the TDN flux increasing under the emission-controlled climate scenarios would be relatively moderate, with a turning point around the 2070s, indicating that positive climate policies could be effective for mitigating the impacts of future climate changes on watershed hydrochemical processes.


Author(s):  
Antero Ollila

The research article of Gillett et al. was published in Nature Climate Change (NCC) in March 2021. The objective of the NCC study was to simulate human-induced forcings to warming by applying 13 CMIP6 (Coupled Model Intercomparison Project Phase 6) climate models. NCC did not accept the author’s remarks as a “Matters arising” article. The purpose of this article is to detail the original three remarks and one additional remark: 1) the discrepancy between the graphs and reported numerical values, 2) the forcings of aerosols and clouds, 3) the positive water feedback, and 4) the calculation basis of the Paris agreement. The most important finding is that General Circulation Models (GCMs) used in simulations omit the significant shortwave anomaly from 2001 to 2019, which causes a temperature error of 0.3°C according to climate change physics of Gillett et al. For the year 2019, this error is 0.8°C showing the magnitude of shortwave anomaly impact. The main reason for this error turns out to be the positive water feedback generally applied in climate models. The scientific basis of the Paris climate agreement is faulty for the same reason.


2014 ◽  
Vol 53 (8) ◽  
pp. 1861-1875 ◽  
Author(s):  
Justin Guilbert ◽  
Brian Beckage ◽  
Jonathan M. Winter ◽  
Radley M. Horton ◽  
Timothy Perkins ◽  
...  

AbstractThe Lake Champlain basin is a critical ecological and socioeconomic resource of the northeastern United States and southern Quebec, Canada. While general circulation models (GCMs) provide an overview of climate change in the region, they lack the spatial and temporal resolution necessary to fully anticipate the effects of rising global temperatures associated with increasing greenhouse gas concentrations. Observed trends in precipitation and temperature were assessed across the Lake Champlain basin to bridge the gap between global climate change and local impacts. Future shifts in precipitation and temperature were evaluated as well as derived indices, including maple syrup production, days above 32.2°C (90°F), and snowfall, relevant to managing the natural and human environments in the region. Four statistically downscaled, bias-corrected GCM simulations were evaluated from the Coupled Model Intercomparison Project phase 5 (CMIP5) forced by two representative concentration pathways (RCPs) to sample the uncertainty in future climate simulations. Precipitation is projected to increase by between 9.1 and 12.8 mm yr−1 decade−1 during the twenty-first century while daily temperatures are projected to increase between 0.43° and 0.49°C decade−1. Annual snowfall at six major ski resorts in the region is projected to decrease between 46.9% and 52.4% by the late twenty-first century. In the month of July, the number of days above 32.2°C in Burlington, Vermont, is projected to increase by over 10 days during the twenty-first century.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1868 ◽  
Author(s):  
Yunfeng Ruan ◽  
Zhijun Yao ◽  
Rui Wang ◽  
Zhaofei Liu

This study assessed the performances of 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs) in reproducing observed precipitation over the Lower Mekong Basin (LMB). Observations from gauge-based data of the Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) precipitation data were obtained from 1975 to 2004. An improved score-based method was used to rank the performance of the GCMs in reproducing the observed precipitation over the LMB. The results revealed that most GCMs effectively reproduced precipitation patterns for the mean annual cycle, but they generally overestimated the observed precipitation. The GCMs showed good ability in reproducing the time series characteristics of precipitation for the annual period compared to those for the wet and dry seasons. Meanwhile, the GCMs obviously reproduced the spatial characteristics of precipitation for the dry season better than those for annual time and the wet season. More than 50% of the GCMs failed to reproduce the positive trend of the observed precipitation for the wet season and the dry season (approximately 52.9% and 64.7%, respectively), and approximately 44.1% of the GCMs failed to reproduce positive trend for annual time over the LMB. Furthermore, it was also revealed that there existed different robust criteria for assessing the GCMs’ performances at a seasonal scale, and using multiple criteria was superior to a single criterion in assessing the GCMs’ performances. Overall, the better-performed GCMs were obtained, which can provide useful information for future precipitation projection and policy-making over the LMB.


Author(s):  
Fatemeh Saedi ◽  
Azadeh Ahmadi ◽  
Karim C. Abbaspour

Abstract The climate change impact on water availability has become a significant cause for concern in the Zayandeh-Roud Reservoir in Iran and similar reservoirs in arid regions. This study investigates the climate change impact on supplying water and water availability in the Zayandeh-Roud River Basin. For better management, the Soil & Water Assessment Tool (SWAT) was used to develop a hydrologic model of the Basin. The model then was calibrated and validated for two upstream stations using the SUFI-2 algorithm in the SWAT-CUP software. The impact of climate change was modeled by using data derived from five Inter-Sectoral Impact Model Intercomparison Project general circulation models under four Representative Concentration Pathways (RCPs). For calibration (1991–2008), the Nash–Sutcliffe efficiency (NSE) values of 0.75 and 0.61 at the Ghaleshahrokh and Eskandari stations were obtained, respectively. For validation (2009–2015), the NSE values were 0.80 and 0.82, respectively. The reservoir inflow would probably reduce by 40–50% during the period of 2020–2045 relative to the base period of 1981–2006. To evaluate the reservoir's future performance, a nonlinear optimization model was used to minimize water deficits. The highest annual water deficit would likely be around 847 MCM. The lowest reservoir reliability and the highest vulnerability occurred under the extreme RCP8.5 pathway.


Sign in / Sign up

Export Citation Format

Share Document