scholarly journals Relieving Bottlenecks during Evacuations Using IoT Devices and Agent-Based Simulation

2021 ◽  
Vol 13 (16) ◽  
pp. 9465
Author(s):  
Moongi Choi ◽  
Sung-Jin Cho ◽  
Chul Sue Hwang

Most of the existing studies on relieving bottlenecks have aimed to develop route-finding algorithms that consider structural factors such as passages and stairs, as well as human factors such as density and speed. However, the methods in providing evacuation routes are as important as the route-making algorithms because a secondary bottleneck could occur continuously during evacuations. Even if an evacuation system provides the same routes to all evacuees regardless of their locations, secondary bottlenecks could happen following the initial bottlenecks due to people rushing toward uncrowded exits all together. To address this issue, we developed a location-based service (LBS) evacuation system prototype that provides optimized-alternative routes to evacuees in real time considering their locations in indoor space. The system was designed to relieve continuous bottlenecks, which relies on installed IoT sensors and beacon machines which detect bottlenecks and provide updated routes, separately. Next, we conducted agent-based simulations to measure the system’s effectiveness (evacuation time reduction and dispersion of evacuees) by changing the system parameters. Simulation results show the evacuation time decreased from 100 to 65 s, and the number of people who took a detour to avoid bottlenecks increased by 28.66% out of the total evacuees with this system. Since this system provides the theoretical solution for distributing evacuees, it can be flexibly employed to a disaster situation in a large and complex indoor environment by applying to other evacuation systems. Moreover, by adjusting parameters, we can derive maximum evacuation effectiveness in other indoor spaces. Future work will consider demographic features of population and multilayer building structure to draw a more accurate pedestrian flow.

2020 ◽  
Author(s):  
Dhouha Ben Noureddine ◽  
Moez Krichen ◽  
Seifeddine Mechti ◽  
Tarik Nahhal ◽  
Wilfried Yves Hamilton Adoni

Internet of Things (IoT) is composed of many IoT devices connected throughout the Internet, that collect and share information to represent the environment. IoT is currently restructuring the actual manufacturing to smart manufacturing. However, inherent characteristics of IoT lead to a number of titanic challenges such as decentralization, weak interoperability, security, etc. The artificial intelligence provides opportunities to address IoT’s challenges, e.g the agent technology. This paper presents first an overview of ML and discusses some related work. Then, we briefly present the classic IoT architecture. Then we introduce our proposed Intelligent IoT (IIoT) architecture. We next concentrate on introducing the approach using multi-agent DRL in IIoT. Finally, in this promising field, we outline the open directions of future work.


2020 ◽  
Author(s):  
Dhouha Ben Noureddine ◽  
Moez Krichen ◽  
Seifeddine Mechti ◽  
Tarik Nahhal ◽  
Wilfried Yves Hamilton Adoni

Internet of Things (IoT) is composed of many IoT devices connected throughout the Internet, that collect and share information to represent the environment. IoT is currently restructuring the actual manufacturing to smart manufacturing. However, inherent characteristics of IoT lead to a number of titanic challenges such as decentralization, weak interoperability, security, etc. The artificial intelligence provides opportunities to address IoT’s challenges, e.g the agent technology. This paper presents first an overview of ML and discusses some related work. Then, we briefly present the classic IoT architecture. Then we introduce our proposed Intelligent IoT (IIoT) architecture. We next concentrate on introducing the approach using multi-agent DRL in IIoT. Finally, in this promising field, we outline the open directions of future work.


2016 ◽  
Vol 30 (09) ◽  
pp. 1650049 ◽  
Author(s):  
Juan Wei ◽  
Hong Zhang ◽  
Zhenya Wu ◽  
Junlin He ◽  
Yangyong Guo

For the evacuation dynamics in indoor space, a novel crowd flow model is put forward based on Linear Fractional Stable Motion. Based on position attraction and queuing time, the calculation formula of movement probability is defined and the queuing time is depicted according to linear fractal stable movement. At last, an experiment and simulation platform can be used for performance analysis, studying deeply the relation among system evacuation time, crowd density and exit flow rate. It is concluded that the evacuation time and the exit flow rate have positive correlations with the crowd density, and when the exit width reaches to the threshold value, it will not effectively decrease the evacuation time by further increasing the exit width.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xia-zhong Zheng ◽  
Xue-ling Xie ◽  
Dan Tian ◽  
Jian-lan Zhou ◽  
Ming Zhang

In order to analyze the evacuation capacity of parallel double running stairs, a dozen stairs merging forms are set by investigation and statistics, and the improved agent-based evacuation model that considers the merging behavior is used to simulate the process of merging and evacuation in the stairs. The stairs evacuation capacity is related to the evacuation time and the robustness of stairs, and the evacuation time can be calculated by using the improved agent-based model based on computer simulation. The robustness of each merging form can be obtained according to the fluctuation degree of evacuation time under the different pedestrian flow. The evaluation model of stairs evacuation capacity is established by fusing the evacuation time and the robustness of stairs. Combined with the specific example to calculate the evacuation capacity of each stairs form, it is found that every merging form has different evacuation time and different robustness, and the evacuation time has not positive correlation with the robustness for the same form stairs. Meanwhile, the evacuation capacity of stairs is not related to the number of the floor entrances. Finally, the results show that the evacuation capacity of stairs is optimal when the floor entrances are close to out stairs in parallel double running stairs and suitable to the case where pedestrian flow and the change of pedestrian flow are large.


2019 ◽  
Vol 35 (1) ◽  
pp. 137-158 ◽  
Author(s):  
Sebastián Castro ◽  
Alan Poulos ◽  
Juan Carlos Herrera ◽  
Juan Carlos de la Llera

Tsunami alerts following severe earthquakes usually affect large geographical regions and require people to evacuate to higher safety zones. However, evacuation routes may be hindered by building debris and vehicles, thus leading to longer evacuation times and an increased risk of loss of life. Herein, we apply an agent-based model to study the evacuation situation of the coastal city of Iquique, north Chile, where most of the population is exposed to inundation from an incoming tsunami. The study evaluates different earthquake scenarios characterized by different ground motion intensities in terms of the evacuation process within a predefined inundation zone. Evacuating agents consider the microscale interactions with cars and other people using a collision avoidance algorithm. Results for the no ground shaking scenario are compared for validation with those of a real evacuation drill done in 2013 for the entire city. Finally, a parametric analysis is performed with ten different levels of ground motion intensity, showing that evacuation times for 95% of the population increase in 2.5 min on average when considering the effect of building debris.


2013 ◽  
Vol 5 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Alfredo Tirado-Ramos ◽  
Chris Kelley

Simulating the transmission of HIV requires a model framework that can account for the complex nature of HIV transmission. In this paper the authors present the current state of the art for simulating HIV with agent-based models and highlight some of the significant contributions of current research. The authors then propose opportunities for future work including their plan that involves identifying and monitoring high-risk drug users that can potentially initiate high-risk infection propagation networks.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yang Zhou ◽  
Tanghong Wu ◽  
Gaofan Zhang ◽  
Zichuan Fan

Emergency evacuation is an important issue in public security. To make a considerate plan, various situations are presented including blocking the accident area and letting the emergency access path available. In order to offer dynamic evacuation routes due to different circumstances, a multistory building evacuation model is proposed. Firstly, to analyse the patency of the building, an evacuation formula is applied after binary processing. The function of evacuation time and some other parameters is given by means of regression analysis. Secondly, the cellular automata (CA) algorithm was applied to illustrate the effect of the bottleneck. The response of evacuation time could be approximately optimized through calculating time step of the CA simulation. Finally, the value of maximum evacuation population density could be determined according to the analysis of CA simulation results, which was related to the switch state of the emergency channel. The emergency evacuation model was simulated by using the Louvre museum as an example. The results of the simulation presented some feasible evacuation routes in all kinds of situations. Furthermore, the functional relationship would also be given among evacuation time with the diversity of tourists, pedestrian density, and width of exits. It can give a different perspective that the multistory building evacuation model shows excellent adaptability to different circumstances.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 627 ◽  
Author(s):  
Camelia Delcea ◽  
Liviu-Adrian Cotfas ◽  
Ioana-Alexandra Bradea ◽  
Marcel-Ioan Boloș ◽  
Gabriella Ferruzzi

As the evacuation problem has attracted and continues to attract a series of researchers due to its high importance both for saving human lives and for reducing the material losses in such situations, the present paper analyses whether the evacuation doors configuration in the case of classrooms and lecture halls matters in reducing the evacuation time. For this aim, eighteen possible doors configurations have been considered along with five possible placements of desks and chairs. The doors configurations have been divided into symmetrical and asymmetrical clusters based on the two doors positions within the room. An agent-based model has been created in NetLogo which allows a fast configuration of the classrooms and lecture halls in terms of size, number of desks and chairs, desks and chair configuration, exits’ size, the presence of fallen objects, type of evacuees and their speed. The model has been used for performing and analyzing various scenarios. Based on these results, it has been observed that, in most cases, the symmetrical doors configurations provide good/optimal results, while only some of the asymmetrical doors configurations provide comparable/better results. The model is configurable and can be used in various scenarios.


2018 ◽  
Vol 49 (4) ◽  
pp. 441-470 ◽  
Author(s):  
Franck Taillandier ◽  
Carole Adam

Background.Risk management, and in particular the management of natural hazards and territorial risks has become an essential skill for civil engineers. Teaching risk management to engineering students is therefore crucial, but is also challenging: it looks too abstract to students, and practical works are complex and expensive to organise. It also involves interconnected mechanisms coupling human and technical aspects, that are difficult to explain. Aim. The challenge is then to propose a serious game able to support the teaching of territorial risk management to engineering students. As part of their curriculum, these students are expected to learn various concepts and notions: territorial risk, vulnerability of a territory, resilience, risk perception, multi-criteria analysis and balanced management. Method. In order to support risk management teaching, we propose SPRITE, an agent-based serious game using a concrete case study which is exemplary in terms of risk management: the coastal floods on the Oleron Island (France). SPRITE places the player (the student) in the role of a local councillor of the Oleron Island, who must ensure the safety and well-being of the island residents, while maximising performance with respect to economic and environmental issues, in a context of coastal flood risk. Results. The model is fully implemented in GAMA, an open-source multi-agent geographical simulation platform, and the game is already playable. It was used at the University of Bordeaux in a course on risk management dedicated to students in the Master of Geology and Civil Engineering. The evaluation of engagement and motivation with the game and learning from playing is very positive. Conclusions. The results from the game evaluation are encouraging. Short term future work will mainly be dedicated to pursuing this evaluation, and comparing results between students using SPRITE vs students following a more traditional course. Longer term prospects include several improvements of the model and the interface and implemented multiplayer features.


Sign in / Sign up

Export Citation Format

Share Document