Optimization of Tungsten Disulfide/Polypyrrole Composite as Photocatalyst in Sunlight-Asissted Photodegradation of Methylene Blue in Aqueous Solution

Author(s):  
Siti Nor Atika Baharin ◽  
Nurul Hafawati Hashim ◽  
Izyan Najwa Mohd Norsham ◽  
Syed Shahabuddin ◽  
Kavirajaa Pandian Sambasevam

Abstract The present study highlights the sunlight-assisted photodegradation of methylene blue (MB) using tungsten disulphide/polypyrrole (WS2/PPy) composite as a photocatalyst. WS2/PPy was prepared via oxidative polymerization using ferric chloride (FeCl3) as an oxidant. Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) measurement were used to ensure the physicochemical properties of WS2/PPy. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB) under sunlight irradiation. The results showed that the degradation efficiency of WS2/PPy was higher than the pristine PPy Several optimizations such as effect of the concentration, contact time, photocatalyst dosage and initial concentration were investigated. The results revealed that, under optimum condition of pH 3, 100 mg photocatalyst dosage, 10 ppm MB initial concentration within 180 minutes contact time, were the most effective parameters, that produced 96.15% of sunlight-assisted photodegradation in aqueous solution of MB.

Author(s):  
Syed Shahabuddin ◽  
Norazilawati Muhamad Sarih ◽  
Muhammad Afzal Kamboh ◽  
Hamid Rashidi Nodeh ◽  
Sharifah Mohamad

The present investigation highlights the synthesis of polyaniline (PANI) coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in-situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB) and the anionic dye methyl orange (MO). The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The adsorption efficiencies of graphene oxide (GO), PANI homopolymer and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt% SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO respectively, in a very short duration of time.


2014 ◽  
Vol 661 ◽  
pp. 51-57
Author(s):  
Mohd Zawawi Mohamad Zulhelmi ◽  
Alrozi Rasyidah ◽  
Senusi Faraziehan ◽  
Mohamad Anuar Kamaruddin

Biosorption process is considered as economical treatment to remove metal from the aqueous solution compared to other established methods. In this study, Saccharomyces cerevisiae was used as biosorbent and subject to immobilization process which consists of ethanol treatment for the removal of binary metals, lead (II) and nickel (II) from aqueous solution. Response surface methodology (RSM) was used to optimize effective parameters condition and the interaction of two or more parameters in order to obtain high removal of the binary metals. The parameters that have been studied were initial concentration of binary metals solution (10 - 60 mg/L), biosorbent dosage (0.2 - 1.0 g), pH (pH 2 - pH 6) and contact time (30 - 360 minutes) towards lead (II) and nickel (II) ions removal. Based on analysis of variance (ANOVA), biosorbent dosage, solution pH and contact time factor were found significant for both responses. Through optimization procedure, the optimum condition for lead (II) and nickel (II) ions removal were obtained at initial concentration of 10.0 mg/L, biosorbent dosage of 1.0 g, solution pH of pH 6, and contact time of 360.00 minutes, which resulted in 95.08 % and 21.09 % removal of lead (II) and nickel (II) ions respectively.


2017 ◽  
Vol 76 (6) ◽  
pp. 1466-1473 ◽  
Author(s):  
M. H. Salmani ◽  
M. Mokhtari ◽  
Z. Raeisi ◽  
M. H. Ehrampoush ◽  
H. A. Sadeghian

Wastewater containing pharmaceutical residual components must be treated before being discharged to the environment. This study was conducted to investigate the efficiency of tungsten-carbon nanocomposite in diclofenac removal using design of experiment (DOE). The 27 batch adsorption experiments were done by choosing three effective parameters (pH, adsorbent dose, and initial concentration) at three levels. The nanocomposite was prepared by tungsten oxide and activated carbon powder in a ratio of 1 to 4 mass. The remaining concentration of diclofenac was measured by a spectrometer with adding reagents of 2, 2′-bipyridine, and ferric chloride. Analysis of variance (ANOVA) was applied to determine the main and interaction effects. The equilibrium time for removal process was determined as 30 min. It was observed that the pH had the lowest influence on the removal efficiency of diclofenac. Nanocomposite gave a high removal at low concentration of 5.0 mg/L. The maximum removal for an initial concentration of 5.0 mg/L was 88.0% at contact time of 30 min. The results of ANOVA showed that adsorbent mass was among the most effective variables. Using DOE as an efficient method revealed that tungsten-carbon nanocomposite has high efficiency in the removal of residual diclofenac from the aqueous solution.


2021 ◽  
Vol 13 (23) ◽  
pp. 13264
Author(s):  
A. A. Oyekanmi ◽  
Akil Ahmad ◽  
Siti Hamidah Mohd Setapar ◽  
Mohammed B. Alshammari ◽  
Mohammad Jawaid ◽  
...  

This investigation reports on the biosorption mechanism of Congo Red dyes (CR) in aqueous solution using acid-treated durian peels, prepared for this study. The biosorbent nature was characterized using the Scanning Electron Microscopy (SEM), Fourier Transform infrared spectroscopy (FT-IR) and Brunaure-Emmet-Teller (BET). The effect of process parameters within operational range of pH (2–9), contact time (10–200 min), initial concentration (25–400 mg g−1) and temperature (25–65 °C) for the optimum removal of CR dyes was investigated using central composite design (CCD) under response surface methodology (RSM), and revealed that the optimum condition of biosorption was achieved around a pH of 5.5, contact time of 105 min at initial concentration of 212.5 mg L−1 within 45 °C temperature, which corresponds to 95.2% percent removal of CR. The experimental data fitted better to the second order polynomial model, with a correlation coefficient R2 value of 0.9917 and the Langmuir isotherm model with biosorption capacity of 107.52 mg g−1. Gibbs free energy indicated that the adsorption of CR dyes was spontaneous. The mechanism of the adsorption of CR dyes revealed that the biosorption of CR dyes investigated under different operational conditions show that under acidic pH, the adsorption efficiency of the acid treated durian peels is enhanced for the adsorption of CR dye molecules.


2016 ◽  
Vol 6 (2) ◽  
pp. 45-50
Author(s):  
Moradi Roya ◽  
Roya Nezakati Esmailzadeh ◽  
Tahmineh Taheri ◽  
Elham Ramezanali ◽  
Azam Mehdipour

Metal Cr and CrIII components usually are not harmful but CrVI is poisonous in case it is swallowed. Half of a tea spoon of Cr VI is fatal. Plating industry and waste waters polluted with CrVI are considered as one of the most im-portant sources of its exposal and emission. Today Bio- absorbents are sub-jects of studies to resolve the above issues. This paper is to study kinetic, isotherm and thermodynamic analysis of Cr adsorption via applying canola meal. Effective parameters in adsorption such as: pH, contact time, adsor-bent dose, temperature and initial concentration of CrVI metal are consid-ered as independent variables and final concentration of Cr VI is considered as dependent variable. Changing one variable while keeping other variables constant is a basic principle in every experiment. The best adsorption effi-ciency of crude canola was obtained in pH 7 and for canola modified with CTAB in pH 2. The optimum dose of adsorbent for both crude and modified canola was equal to 0.150g/L. also the best contact time was 60 minutes. Maximum adsorption obtained in 12.5 mg/lit CrVI concentration and in 60°c. With respect to capacity of Cr VI adsorption in canola meal it can be applied to remove the CrVI and similar pollutants from water and waste water.


2020 ◽  
Vol 301 ◽  
pp. 145-152 ◽  
Author(s):  
Faizah Yunus ◽  
Muhammad Syazwan Kassim ◽  
Syed Shahabuddin ◽  
Nur Rahimah Said ◽  
Siti Nor Atika Baharin

This investigation focused on the photocatalytic degradation of o2-chlorophenol in aqueous solution by using hexagonal boron nitride (h-BN) doped polypyrrole (PPy) composite under solar irradiation. The composite was prepared via in-situ oxidation polymerization method using FeCl3 as oxidation agent. The synthesized h-BN/PPy composite were comprehensively characterized using x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The photodegradation of 2-chlorophenol was performed under direct sunlight for 180 minutes with initial concentration (50-250 mg/L) and pH (3-9). h-BN/PPy composite efficiently degraded 2-chlorophenol (91.1%) with optimum conditions at pH 6 and 50 mg/L initial concentration compared to PPy and h-BN.


2019 ◽  
Vol 14 (4) ◽  
pp. 897-907 ◽  
Author(s):  
Hosseinali Asgharnia ◽  
Hamidreza Nasehinia ◽  
Roohollah Rostami ◽  
Marziah Rahmani ◽  
Seyed Mahmoud Mehdinia

Abstract Phenol and its derivatives are organic pollutants with dangerous effects, such as poisoning, carcinogenicity, mutagenicity, and teratogenicity in humans and other organisms. In this study, the removal of phenol from aqueous solution by adsorption on silica and activated carbon of rice husk was investigated. In this regard, the effects of initial concentration of phenol, pH, dosage of the adsorbents, and contact time on the adsorption of phenol were investigated. The results showed that the maximum removal of phenol by rice husk silica (RHS) and rice husk activated carbon (RHAC) in the initial concentration of 1 mgL−1 phenol, 2 gL−1 adsorbent mass, 120 min contact time, and pH 5 (RHS) or pH 6 (RHAC) were obtained up to 91% and 97.88%, respectively. A significant correlation was also detected between increasing contact times and phenol removal for both adsorbents (p < 0.01). The adsorption process for both of the adsorbents was also more compatible with the Langmuir isotherm. The results of this study showed that RHS and RHAC can be considered as natural and inexpensive adsorbents for water treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Ha Xuan Linh ◽  
Ngo Thi Thu ◽  
Tran Quoc Toan ◽  
Do Tra Huong ◽  
Bui Thanh Giang ◽  
...  

In this work, the mixture of red mud slurry and inorganic salt ((NH4)2SO4) has been used as an electrolyte for electrochemical activation of graphite. The red mud-activated graphite composite was then used as an adsorbent for removing methylene blue from aqueous solution by the batch method. The effect of pH, contact time, adsorbent dosage, and the initial concentration of methylene blue was investigated. The optimal condition was found at pH 6, contact time 120 min, and amount of adsorbent 1 mg/L. The maximum adsorption capacity was found to be 89.28 mg/g based on the Langmuir isotherm equation, suggesting that the red mud-activated graphite composite is a very potential adsorbent for removing methylene blue and is also used in other coloured wastewater treatments.


2013 ◽  
Vol 726-731 ◽  
pp. 602-605 ◽  
Author(s):  
Xiao Hua Bai ◽  
Shi Chang Wang ◽  
Chang Qing Wang ◽  
Xin You Lei ◽  
Guo Fang Zuo ◽  
...  

The CdS quantum dots sensitized TiO2 nanotubes were prepared by sequential chemical bath deposition (S-CBD) method and characterized by FE-SEM and UV-vis spectroscopy. And they were used to degrade the dimethyl phthalate (DMP) in aqueous under sunlight irradiation. The results show that these photo-catalysts have the highest performance, while the initial concentration of dimethyl phthalate in aqueous solution is 10 mg / L, the degradation rates reaches above 80% in the optimum condition which is the CdS deposited 20 cycles, catalyst dosage ~3cm2, and the sunlight irradiating 180 minutes.


Sign in / Sign up

Export Citation Format

Share Document