scholarly journals Evaluation of the Risk Induced by Soil Erosion on Land Use. Case Study: Guruslău Depression

2022 ◽  
Vol 14 (2) ◽  
pp. 652
Author(s):  
Andreea Costea ◽  
Stefan Bilasco ◽  
Ioan-Aurel Irimus ◽  
Sanda Rosca ◽  
Iuliu Vescan ◽  
...  

Changes in land use, increasing of agricultural areas to the detriment of wooded ones, and poor management of agricultural land, along with the impact of current changes in the climate (reflected in the increase of the climate aggression index) makes soil erosion one of the main risks associated with improper land use, with a direct impact on its productivity and an indirect impact on human beings. The aim of this study is to assess the risk induced by surface soil erosion on land use, using as our main method of investigation the development of two models of integrated spatial analysis of the territory: a derived model of the universal soil loss equation (USLE) and a qualitative model that integrates the result of soil erosion assessment with the database representing the land use. This was carried out in order to highlight the impact on the territory. The spatial analysis models were developed on a structure of vector spatial databases, through which the soil type, soil texture, climate aggression coefficient, and land use were mapped, and alphanumeric databases, representing the market cost of land, in EUROs, that highlight the quality of cultivated land (in terms of productive economic potential). The induced risk estimation is based on a qualitative rating of soil erosion vulnerability on a scale from 1 to 5 (1-low vulnerability; 5-high vulnerability) and of the reduction of the economic value of the land (according to the vulnerability rating). The implemented methodology highlights the quantitative risk, with a maximum value of about 46.000 EUROs, spatially identified on large surfaces on the outskirts of the Jibou municipality. It is mainly caused by the impact of soil erosion on large areas of orchards, which provide necessary products for human consumption. The present methodology can be implemented on similar areas and can be used as a model of good practices in risk assessment based on financial losses by local public authorities.

2017 ◽  
Vol 47 (2) ◽  
pp. 95-112 ◽  
Author(s):  
Peter Rončák ◽  
Evelin Lisovszki ◽  
Ján Szolgay ◽  
Kamila Hlavčová ◽  
Silvia Kohnová ◽  
...  

AbstractThe effects of land use management practices on surface runoff are evident on a local scale, but evidence of their impact on the scale of a watershed is limited. This study focuses on an analysis of the impact of land use changes on the flood regime in the Myjava River basin, which is located in Western Slovakia. The Myjava River basin has an area of 641.32 km2and is typified by the formation of fast runoff processes, intensive soil erosion, and muddy floods. The main factors responsible for these problems with flooding and soil erosion are the basin’s location, geology, pedology, agricultural land use, and cropping practices. The GIS-based, spatially distributed WetSpa rainfall-runoff model was used to simulate mean daily discharges in the outlet of the basin as well as the individual components of the water balance. The model was calibrated based on the period between 1997 and 2012 with outstanding results (an NS coefficient of 0.702). Various components of runoff (e.g., surface, interflow and groundwater) and several elements of the hydrological balance (evapotranspiration and soil moisture) were simulated under various land use scenarios. Six land use scenarios (‘crop’, ‘grass’, ‘forest’, ‘slope’, ‘elevation’ and ‘optimal’) were developed. The first three scenarios exhibited the ability of the WetSpa model to simulate runoff under changed land use conditions and enabled a better adjustment of the land use parameters of the model. Three other “more realistic” land use scenarios, which were based on the distribution of land use classes (arable land, grass and forest) regarding permissible slopes in the catchment, confirmed the possibility of reducing surface runoff and maximum discharges with applicable changes in land use and land management. These scenarios represent practical, realistic and realizable land use management solutions and they could be economically implemented to mitigate soil erosion processes and enhance the flood protection measures in the Myjava River basin.


2021 ◽  
Vol 2 (1) ◽  
pp. 14-19
Author(s):  
Awani Dilha Merdekawati

The construction of the Yogyakarta International Airport (YIA) in Temon District, Kulon Progo Regency has various impacts, one of which is the growth of the aerotropolis area which causes changes in land use. The conversion of land use, causing any difference in economic valuation. The purpose of this research is to determine the impact of agricultural land conversion through economic value of the Kulon Progo aerotropolis area, with case studies in Palihan, Sindutan, Jangkaran, Kebonrejo and Glagah village. This research uses a non-empirical study method while research approach uses a mixed quantitative and qualitative approach. The analysis used in the form of land use change by digitizing the image (CSTR) of land and geo-referencing overlay in ArcGis, as well as economic valuation analysis. The result shows that changes in economic value have decreased for the use of agricultural and pond fields, while for settlements, the economic value after the construction of YIA has increased.


2021 ◽  
Vol 887 (1) ◽  
pp. 012018
Author(s):  
A. Pugara ◽  
B. Pradana ◽  
D. A. Puspasari

Abstract Kajen Sub-District is the Capital of the Pekalongan Regency. This area is the center of activity that grows to be the urban area with trading and services as the economic pole. The trading and services activity is escalating inherent with the existence of IAIN and UNDIP campuses. The new campus increasing the need for a dormitory or housing and facilities area. Its result of land conversion in vegetation and agriculture. This spatial and development planning above contain in the Pekalongan Regency spatial document years 2020 – 2040. According to that document, the built-up area is predicted to be 50 % growth by the end of the planning period. The study regarding the influence of the land-use changes on the water carrying capacity in Kajen is conducted with the deductive–quantitative method. The deductive is begin to form theoretical synthesis about the themes and then search the empirical fact to compare. The quantitative approach means the data of the study is can be count rationally. The analysis tools of the study are spatial analysis and correlation. The study aims to examine the influence of the land-use change on the water carrying capacity and the most significant land use which influences it. The result of the study it the most influencing land use in water carrying capacity is a settlement with an 8.7-point level of correlation. The settlement appears from the agricultural land conversion, especially dry land and paddy field.


Author(s):  
Oksana Sakal

The article is devoted doctrinal issues of environmental and economic effectiveness of use land in conditions of infringement of institutional transformations. The modern approaches to the definition of content of ecological and economic effectiveness of land use are analyzed. It is established that the overwhelming majority of domestic researchers interpret this notion regarding the use of agricultural land or farm land. It is proved that such an approach is justified, taking into account the structure of the land fund of Ukraine. However, this reduces other goals of the land user and functions of the land. It is proposed to investigate the category of ecological and economic effectiveness of land use in accordance with the provisions of the ecological economics, social welfare theory, and concept of total economic value. Based on the classification of land functions, the criteria of selection material content and social form of ecological and economic effectiveness of land use are determined.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 762
Author(s):  
Lei Han ◽  
Rui Chen ◽  
Zhao Liu ◽  
Shanshan Chang ◽  
Yonghua Zhao ◽  
...  

The environment of the urban fringe is complex and frangible. With the acceleration of industrialization and urbanization, the urban fringe has become the primary space for urban expansion, and the intense human activities create a high risk of potentially toxic element (PTE) pollution in the soil. In this study, 138 surface soil samples were collected from a region undergoing rapid urbanization and construction—Weinan, China. Concentrations of As, Pb, Cr, Cu, and Ni (Inductively Coupled Plasma Mass Spectrometry, ICP-MS) and Hg (Atomic Fluorescence Spectrometry, AFS) were measured. The Kriging interpolation method was used to create a visualization of the spatial distribution characteristics and to analyze the pollution sources of PTEs in the soil. The pollution status of PTEs in the soil was evaluated using the national environmental quality standards for soils in different types of land use. The results show that the content range of As fluctuated a small amount and the coefficient of variation is small and mainly comes from natural soil formation. The content of Cr, Cu, and Ni around the automobile repair factory, the prefabrication factory, and the building material factory increased due to the deposition of wear particles in the soil. A total of 13.99% of the land in the study area had Hg pollution, which was mainly distributed on category 1 development land and farmland. Chemical plants were the main pollution sources. The study area should strictly control the industrial pollution emissions, regulate the agricultural production, adjust the land use planning, and reduce the impact of pollution on human beings. Furthermore, we make targeted remediation suggestions for each specific land use type. These results are of theoretical significance, will be of practical value for the control of PTEs in soil, and will provide ecological environmental protection in the urban fringe throughout the urbanization process.


Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


2018 ◽  
Vol 10 (10) ◽  
pp. 3556 ◽  
Author(s):  
Gang Liu ◽  
Lu Shi ◽  
Kevin Li

This paper develops a lexicographic optimization model to allocate agricultural and non-agricultural water footprints by using the land area as the influencing factor. An index known as the water-footprint-land density (WFLD) index is then put forward to assess the impact and equity of the resulting allocation scheme. Subsequently, the proposed model is applied to a case study allocating water resources for the 11 provinces and municipalities in the Yangtze River Economic Belt (YREB). The objective is to achieve equitable spatial allocation of water resources from a water footprint perspective. Based on the statistical data in 2013, this approach starts with a proper accounting for water footprints in the 11 YREB provinces. We then determined an optimal allocation of water footprints by using the proposed lexicographic optimization approach from a land area angle. Lastly, we analyzed how different types of land uses contribute to allocation equity and we discuss policy changes to implement the optimal allocation schemes in the YREB. Analytical results show that: (1) the optimized agricultural and non-agricultural water footprints decrease from the current levels for each province across the YREB, but this decrease shows a heterogeneous pattern; (2) the WFLD of 11 YREB provinces all decline after optimization with the largest decline in Shanghai and the smallest decline in Sichuan; and (3) the impact of agricultural land on the allocation of agricultural water footprints is mainly reflected in the land use structure of three land types including arable land, forest land, and grassland. The different land use structures in the upstream, midstream, and downstream regions lead to the spatial heterogeneity of the optimized agricultural water footprints in the three YREB segments; (4) In addition to the non-agricultural land area, different regional industrial structures are the main reason for the spatial heterogeneity of the optimized non-agricultural water footprints. Our water-footprint-based optimal water resources allocation scheme helps alleviate the water resources shortage pressure and achieve coordinated and balanced development in the YREB.


2013 ◽  
Vol 5 (8) ◽  
pp. 3244-3274 ◽  
Author(s):  
Pheerawat Plangoen ◽  
Mukand Babel ◽  
Roberto Clemente ◽  
Sangam Shrestha ◽  
Nitin Tripathi

Sign in / Sign up

Export Citation Format

Share Document