scholarly journals Greenhouse Gas Emissions of the Forest Supply Chain in Austria in the Year 2018

2022 ◽  
Vol 14 (2) ◽  
pp. 792
Author(s):  
Martin Kühmaier ◽  
Iris Kral ◽  
Christian Kanzian

Wood is a renewable product, but for the supply of wood non-renewable materials are also necessary, which can have negative environmental impacts. The objective of this study was to analyze the greenhouse gas (GHG) emissions caused by the forest supply chain in Austria using Life Cycle Assessment (LCA) methods. The forest supply chain consists of several processes like site preparation and tending, harvesting, and transport. In total, 30 relevant forest processes from seedling production until delivery of wood to the plant gate were considered. Results show that in the year 2018, a total of 492,096 t of CO2 eq. were emitted in Austria for harvesting and transportation of 19.2 hm³ of timber. This corresponds to 25.63 kg CO2 eq. per m³. At 77%, transport accounts for the largest share of emissions within the supply chain. Extraction causes 14% of emissions, felling and processing cause 5%, and chipping causes 4%. GHG emissions for felling, delimbing, and crosscutting are much lower when using a chainsaw compared to harvester. The high numbers for the transport can be explained by the high transportation distances. Especially for the transportation of wood, it is necessary to find more climate-friendly solutions from a technical and organizational point of view. The provision of wood is climate-friendly, and its use enables the substitution of fossil fuels or materials with higher negative effects on climate change such as aluminum, steel, or concrete.

2007 ◽  
Vol 01 (03) ◽  
pp. 05-10
Author(s):  
_ Talent & Technology

Feature - In late June, 2007 SPE President Abdul-Jaleel Al-Khalifa hosted an executive industry wide summit with 75 global leaders to advance cross-sector collaboration on two critical issues facing the oil and gas industry. Talent scarcity has been a pressing and recurring item on company agendas for several years. On the technology front, the heightened focus on climate change and greenhouse-gas (GHG) emissions from fossil fuels is expected to influence many areas including media, legislation, and policymaking. The oil and gas industry has been actively involved in various technology projects to promote carbon sequestration. The summit provided a venue to frame and boost an industry position on this critical and widely publicized subject.


2015 ◽  
Vol 26 (3) ◽  
pp. 125-134
Author(s):  
Udochukwu B. Akuru ◽  
Ogbonnaya I. Okoro ◽  
Edward Chikuni

It is well known fact that the rate of industrial growth of any country is a function of the amount of energy available in that country and the extent to which this energy is utilized. The burning of fossil fuels to generate energy is a dirty process. Greenhouse gas (GHG) emissions result when fossil fuels are produced and consumed and these emissions contribute to climate change. Nigeria as a country is highly vulnerable to the impacts of climate change because its economy is mainly dependent on income generated from the production, processing, export and/or consumption of fossil fuels and its associated energy-intensive products. Hence, it is on this premise that this paper is researched to review the energy sources being used in Nigeria and investigate its impact to climate change. Findings reveal Nigeria’s over-dependence on fossil-generated energy with associated adverse environmental effects, among other things. Recommendations for the integration of renewable energy into Nigeria’s energy mix, beyond other measures, have been offered, especially with reference to the salient environmental benefits that accrue to it.


2021 ◽  
Vol 13 (4) ◽  
pp. 1750
Author(s):  
Guillermo Filippone ◽  
Rocío Sancho ◽  
Sebastián Labella

As a contribution to the fight against climate change, ESNE’s 2018/19 carbon footprint has been evaluated using the CarbonFeel methodology, based on ISO 14069 standards. In the scenario studied, greenhouse gas (GHG) emissions produced by direct and indirect emissions have been included. For comparative purposes, a second scenario has been analyzed in which fossil fuels used for heating are replaced by electrical energy from renewable sources. A decrease of 28% in GHG emissions has been verified, which could even reach 40% if the energy for thermal conditioning was replaced by renewables.


2018 ◽  
Author(s):  
Angel D. Ramirez ◽  
Danilo Arcentales ◽  
Andrea Boero

Climate change is a serious threat to sustainability. Anthropogenic climate change is due to the accumulation of greenhouse gases (GHG) in the atmosphere beyond natural levels. Anthropogenic GHG emissions are mostly associated with carbon-dioxide (CO2) originated in the combustion of fossil fuels used for heat, power, and transportation. Globally, transportation contributes to 14% of the global GHG emissions. The transport sector is one of the main contributors to the greenhouse gas emissions of Ecuador. In Guayaquil, the road mass transportation system comprises regular buses and the bus rapid transit (BRT) system. Electricity in Ecuador is mostly derived from hydropower, hence incurs relatively low GHG emissions along its life cycle. Therefore, electrification of transport has been seen as an opportunity for mitigation of GHG emissions. In this study, the effect of partial replacement of the bus rapid system fleet is investigated. Feeders have been chosen as the replacement target in five different scenarios. GHG emissions from diesel-based feeders have been calculated using the GREET Fleet Footprint Calculator tool. The GHG emissions associated with the electricity used for transportation is calculated using the life cycle inventory of the electricity generation system of Ecuador. Three energy mix scenarios are used for this purpose. The 2012 mix which had 61% hydropower; the mix of 85% hydropower and the marginal electricity scenario, which supposed the extreme case when the new demand for electricity occurs during peak demand periods. Results indicate that mitigation of GHG emissions is possible for almost all scenarios of percentage fleet replacement and all mix scenarios. Electric buses efficiency and the carbon intensity of the electricity mix are critical for GHG mitigation.


Wind ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 1-19
Author(s):  
Leon Sander ◽  
Christopher Jung ◽  
Dirk Schindler

Wind energy is crucial in German energy and climate strategies as it substitutes carbon-intensive fossil fuels and achieves substantial greenhouse gas (GHG) reductions. However, wind energy deployment currently faces several problems: low expansion rates, wind turbines at the end of their service life, or the end of remuneration. Repowering is a vital strategy to overcome these problems. This study investigates future annual GHG payback times and emission savings of repowered wind turbines. In total, 96 repowering scenarios covering a broad range of climatological, technical, economic, and political factors affecting wind energy output in 2025–2049 were studied. The results indicate that due to more giant wind turbines and geographical restrictions, the amount of repowerable sites is reduced significantly. Consequently, in most scenarios, emission savings will dramatically diminish compared to current savings. Even in the best-case scenario, the highest emission savings’ growth is at 11%. The most meaningful drivers of GHG payback time and emission savings are wind turbine type, geographical restrictions, and GHG emissions. In contrast, climate change impact on the wind resource is only marginal. Although repowering alone is insufficient for achieving climate targets, it is a substantial part of the wind energy strategy. It could be improved by the synergies of different measures presented in this study. The results emphasize that a massive expansion of wind energy is required to establish it as a cornerstone of the future energy mix.


2021 ◽  
Vol 13 (4) ◽  
pp. 1795
Author(s):  
Pedro Dorta Antequera ◽  
Jaime Díaz Pacheco ◽  
Abel López Díez ◽  
Celia Bethencourt Herrera

Many small islands base their economy on tourism. This activity, based to a large extent on the movement of millions of people by air transport, depends on the use of fossil fuels and, therefore, generates a large amount of greenhouse gas (GHG) emissions. In this work, these emissions are evaluated by means of various carbon calculators, taking the Canary Islands as an example, which is one of the most highly developed tourist archipelagos in the world. The result is that more than 6.4 million tonnes (Mt) of CO2 are produced per year exclusively due to the massive transport of tourists over an average distance of more than 3000 km. The relative weight of these emissions is of such magnitude that they are equivalent to more than 50% of the total amount produced by the socioeconomic activity of the archipelago. Although, individually, it is travelers from Russia and Nordic countries who generate the highest carbon footprint due to their greater traveling distance, the British and German tourists account for the greatest weight in the total, with two-thirds of emissions.


2005 ◽  
Vol 31 ◽  
pp. 279-309 ◽  
Author(s):  
Axel Gosseries

Evidence provided by the scientific community strongly suggests that limits should be placed on greenhouse gas (GHG) emissions. This means that states, firms, and individuals will have to face potentially serious burdens if they are to implement these limits. Which principles of justice should guide a global regime aimed at reducing greenhouse gas (GHG) emissions originating from human activities, and most notably from CO2 emissions? This is both a crucial and difficult question. Admittedly, perhaps this question is too ambitious, given the uncertainties and complexities characterizing the issue of climate change. Yet, rather than listing them all at this stage, let us address the question in a straightforward manner, introducing some of these complexities as the need arises.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

Nowadays, the global climate change has been a worldwide concern and the greenhouse gases (GHG) emissions are considered as the primary cause of that. The United Nations Conference on Environment and Development (UNCED) divided countries into two groups: Annex I Parties and Non-Annex I Parties. Since Iran and all other countries in the Middle East are among Non-Annex I Parties, they are not required to submit annual GHG inventory report. However, the global climate change is a worldwide phenomenon so Middle Eastern countries should be involved and it is necessary to prepare such a report at least unofficially. In this paper the terminology and the methods to calculate GHG emissions will first be explained and then GHG emissions estimates for the Iranian power plants will be presented. Finally the results will be compared with GHG emissions from the Canadian electricity generation sector. The results for the Iranian power plants show that in 2005 greenhouse gas intensity for steam power plants, gas turbines and combined cycle power plants were 617, 773, and 462 g CO2eq/kWh, respectively with the overall intensity of 610 g CO2eq/kWh for all thermal power plants. This GHG intensity is directly depend on efficiency of power plants. Whereas, in 2004 GHG intensity for electricity generation sector in Canada for different fuels were as follows: Coal 1010, refined petroleum products 640, and natural gas 523 g CO2eq/kWh, which are comparable with same data for Iran. For average GHG intensity in the whole electricity generation sector the difference is much higher: Canada 222 vs. Iran 610g CO2eq/kWh. The reason is that in Canada a considerable portion of electricity is generated by hydro-electric and nuclear power plants in which they do not emit significant amount of GHG emissions. The average GHG intensity in electricity generation sector in Iran between 1995 and 2005 experienced 13% reduction. While in Canada at the same period of time there was 21% increase. However, the results demonstrate that still there are great potentials for GHG emissions reduction in Iran’s electricity generation sector.


2021 ◽  
Vol 4 (2) ◽  
pp. 1100-1107
Author(s):  
Nguyen Van Phu

Climate change is one of the greatest threats to human beings, and agriculture is one of the fields that is most negatively affected by climate change. Farmers around the world and global food supply chains are impacted by the more extreme weather phenomena and increased damage of diseases and pests caused by climate change. Today, almost all agricultural enterprises and farms consider climate change a serious long-term risk for their production. Agricultural land systems can produce significant greenhouse gases (GHGs) by the conversion of forests to crop- and animal lands, and also through the weak management of crops and livestock. Around the world, cultivation and cattle production accounts for 25% of global GHG emissions (Javeline, ‎2014). However, under suitable conditions, agriculture can create environmental conditions that can help minimize pollution and the negative effects of climate change including carbon absorption by green plants in forests, and fields for watershed protection and biodiversity conservation. Sustainable agriculture helps farmers to adapt, maintain, and improve productivity without applying harmful techniques. In turn, this allows farms to manage and mitigate climate-related risks in their supply chains. The Sustainable Agriculture Network (SAN) has found new ways to incorporate smart climate cultivation methods into all farming practices to help farms and enterprises carry out agriculture sustainably.


2021 ◽  
Vol 47 (2) ◽  
pp. 332-348
Author(s):  
Tariq Umar

Reduction in emissions is the key to tackle climate change issues and achieve environmental sustainability. The Gulf Cooperation Council member countries however, not only generate the highest quantity of MSW/capita when compared globally but also in most of these countries such waste is just dumped at different landfill stations. In Oman, the total quantity of MSW stood at 2.0 million tonnes/year. The emission from this waste is estimated at 2,989,467 tonnes/year (CO2 Equivalent). This article attempts to develop frameworks that considered landfilling, composting, and recycling of MSW and compared the emissions of these frameworks. The framework (F2) which proposes the landfilling and composting process for the organic waste which normally goes to landfills results in an increase of emissions by 7% as compared to landfill practice. Similarly, the samples of MSW collected in Oman show a good amount of recycling waste. The framework (F3) which considers the landfill, composting, and recycling reduced the total Greenhouse Gas emissions from 2,989,467 tonnes/year to 2,959,735 tonnes/year (CO2 Equivalent); representing a total reduction of 1% in emissions. Although composting increases the emissions, however, considering composting and recycling will not only reduce the burden on landfills but will promote agricultural and industrial activates.


Sign in / Sign up

Export Citation Format

Share Document