scholarly journals Internet of Things and Its Applications: A Comprehensive Survey

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1674
Author(s):  
Rosilah Hassan ◽  
Faizan Qamar ◽  
Mohammad Kamrul Hasan ◽  
Azana Hafizah Mohd Aman ◽  
Amjed Sid Ahmed

With the evolution of the fifth-generation (5G) wireless network, the Internet of Things (IoT) has become a revolutionary technique that enables a diverse number of features and applications. It can able a diverse amount of devices to be connected in order to create a single communication architecture. As it has significantly expanded in recent years, it is fundamental to study this trending technology in detail and take a close look at its applications in the different domains. It represents an enabler of new communication possibilities between people and things. The main asset of this concept is its significant influence through the creation of a new world dimension. The key features required for employing a large-scale IoT are low-cost sensors, high-speed and error-tolerant data communications, smart computations, and numerous applications. This research work is presented in four main sections, including a general overview of IoT technology, a summary of previous correlated surveys, a review regarding the main IoT applications, and a section on the challenges of IoT. The purpose of this study is to fully cover the applications of IoT, including healthcare, environmental, commercial, industrial, smart cities, and infrastructural applications. This work explains the concept of IoT and defines and summarizes its main technologies and uses, offering a next-generation protocol as a solution to the challenges. IoT challenges were investigated to enhance research and development in the fields. The contribution and weaknesses of each research work cited are covered, highlighting eventual possible research questions and open matters for IoT applications to ensure a full analysis coverage of the discussed papers.

2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Claudia Campolo ◽  
Giacomo Genovese ◽  
Antonio Iera ◽  
Antonella Molinaro

Several Internet of Things (IoT) applications are booming which rely on advanced artificial intelligence (AI) and, in particular, machine learning (ML) algorithms to assist the users and make decisions on their behalf in a large variety of contexts, such as smart homes, smart cities, smart factories. Although the traditional approach is to deploy such compute-intensive algorithms into the centralized cloud, the recent proliferation of low-cost, AI-powered microcontrollers and consumer devices paves the way for having the intelligence pervasively spread along the cloud-to-things continuum. The take off of such a promising vision may be hurdled by the resource constraints of IoT devices and by the heterogeneity of (mostly proprietary) AI-embedded software and hardware platforms. In this paper, we propose a solution for the AI distributed deployment at the deep edge, which lays its foundation in the IoT virtualization concept. We design a virtualization layer hosted at the network edge that is in charge of the semantic description of AI-embedded IoT devices, and, hence, it can expose as well as augment their cognitive capabilities in order to feed intelligent IoT applications. The proposal has been mainly devised with the twofold aim of (i) relieving the pressure on constrained devices that are solicited by multiple parties interested in accessing their generated data and inference, and (ii) and targeting interoperability among AI-powered platforms. A Proof-of-Concept (PoC) is provided to showcase the viability and advantages of the proposed solution.


Author(s):  
Karan Bajaj ◽  
Bhisham Sharma ◽  
Raman Singh

AbstractThe Internet of Things (IoT) applications and services are increasingly becoming a part of daily life; from smart homes to smart cities, industry, agriculture, it is penetrating practically in every domain. Data collected over the IoT applications, mostly through the sensors connected over the devices, and with the increasing demand, it is not possible to process all the data on the devices itself. The data collected by the device sensors are in vast amount and require high-speed computation and processing, which demand advanced resources. Various applications and services that are crucial require meeting multiple performance parameters like time-sensitivity and energy efficiency, computation offloading framework comes into play to meet these performance parameters and extreme computation requirements. Computation or data offloading tasks to nearby devices or the fog or cloud structure can aid in achieving the resource requirements of IoT applications. In this paper, the role of context or situation to perform the offloading is studied and drawn to a conclusion, that to meet the performance requirements of IoT enabled services, context-based offloading can play a crucial role. Some of the existing frameworks EMCO, MobiCOP-IoT, Autonomic Management Framework, CSOS, Fog Computing Framework, based on their novelty and optimum performance are taken for implementation analysis and compared with the MAUI, AnyRun Computing (ARC), AutoScaler, Edge computing and Context-Sensitive Model for Offloading System (CoSMOS) frameworks. Based on the study of drawn results and limitations of the existing frameworks, future directions under offloading scenarios are discussed.


2020 ◽  
Author(s):  
Fábio Rodrigues de la Rocha

Public street lighting management is a well known problemwhich can be revisited from the perspective of Smart Cities.In Smart Cities there is an interconnection of services andinfrastructure to provide sustainable growth and improvementsin citizens’ quality of life. In this research work, weexplore new low cost technologies to create a smart streetlight system capable of monitoring and controlling the lamps,thus reducing the costs with maintenance and allowing amore rational use of electricity.


Author(s):  
Akashdeep Bhardwaj

This article describes how the rise of fog computing to improve cloud computing performance and the acceptance of smart devices is slowly but surely changing our future and shaping the computing environment around us. IoT integrated with advances in low cost computing, storage and power, along with high speed networks and big data, supports distributed computing. However, much like cloud computing, which are under constant security attacks and issues, distributed computing also faces similar challenges and security threats. This can be mitigated to a great extent using fog computing, which extends the limits of Cloud services to the last mile edge near to the nodes and networks, thereby increasing the performance and security levels. Fog computing also helps increase the reach and comes across as a viable solution for distributed computing. This article presents a review of the academic literature research work on the Fog Computing. The authors discuss the challenges in Fog environment and propose a new taxonomy.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Zeeshan Ali Khan ◽  
Peter Herrmann

Many Internet of Things (IoT) systems run on tiny connected devices that have to deal with severe processor and energy restrictions. Often, the limited processing resources do not allow the use of standard security mechanisms on the nodes, making IoT applications quite vulnerable to different types of attacks. This holds particularly for intrusion detection systems (IDS) that are usually too resource-heavy to be handled by small IoT devices. Thus, many IoT systems are not sufficiently protected against typical network attacks like Denial-of-Service (DoS) and routing attacks. On the other side, IDSs have already been successfully used in adjacent network types like Mobile Ad hoc Networks (MANET), Wireless Sensor Networks (WSN), and Cyber-Physical Systems (CPS) which, in part, face limitations similar to those of IoT applications. Moreover, there is research work ongoing that promises IDSs that may better fit to the limitations of IoT devices. In this article, we will give an overview about IDSs suited for IoT networks. Besides looking on approaches developed particularly for IoT, we introduce also work for the three similar network types mentioned above and discuss if they are also suitable for IoT systems. In addition, we present some suggestions for future research work that could be useful to make IoT networks more secure.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 444 ◽  
Author(s):  
Hao Yang ◽  
Xiaojiang Li ◽  
Guodong Wang ◽  
Jianbang Zheng

Polycrystalline lead selenide material that is processed after a sensitization technology offers the additional physical effects of carrier recombination suppression and carrier transport manipulation, making it sufficiently sensitive to mid-infrared radiation at room temperature. Low-cost and large-scale integration with existing electronic platforms such as complementary metal–oxide–semiconductor (CMOS) technology and multi-pixel readout electronics enable a photodetector based on polycrystalline lead selenide coating to work in high-speed, low-cost, and low-power consumption applications. It also shows huge potential to compound with other materials or structures, such as the metasurface for novel optoelectronic devices and more marvelous properties. Here, we provide an overview and evaluation of the preparations, physical effects, properties, and potential applications, as well as the optoelectronic enhancement mechanism, of lead selenide polycrystalline coatings.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4273
Author(s):  
Jeferson Rodrigues Cotrim ◽  
João Henrique Kleinschmidt

The growth of the Internet of Things (IoT) led to the deployment of many applications that use wireless networks, like smart cities and smart agriculture. Low Power Wide Area Networks (LPWANs) meet many requirements of IoT, such as energy efficiency, low cost, large coverage area, and large-scale deployment. Long Range Wide Area Network (LoRaWAN) networks are one of the most studied and implemented LPWAN technologies, due to the facility to build private networks with an open standard. Typical LoRaWAN networks are single-hop in a star topology, composed of end-devices that transmit data directly to gateways. Recently, several studies proposed multihop LoRaWAN networks, thus forming wireless mesh networks. This article provides a review of the state-of-the-art multihop proposals for LoRaWAN. In addition, we carried out a comparative analysis and classification, considering technical characteristics, intermediate devices function, and network topologies. This paper also discusses open issues and future directions to realize the full potential of multihop networking. We hope to encourage other researchers to work on improving the performance of LoRaWAN mesh networks, with more theoretical and simulation analysis, as well as practical deployments.


2020 ◽  
Vol 12 (10) ◽  
pp. 4105
Author(s):  
Alaa Omran Almagrabi ◽  
Yasser D. Al-Otaibi

Nowadays, communication engineering technology is merging with the Internet of Things (IoT), which consists of numerous connected devices (referred to as things) around the world. Many researchers have shown significant growth of sensor deployments for multiple smart engineering technologies, such as smart-healthcare, smart-industries, smart-cities, and smart-transportation, etc. In such intelligent engineering technologies, sensors continuously generate a bunch of messages in the network. To enhance the value of the data in the messages, we must know the actuality of the data embedded inside the messages. For this purpose, the contextual information of the data creates a vital challenge. Recently, context-aware computing has emerged to be fruitful in dealing with sensor information. In the ubiquitous computing domain, location is commonly considered one of the most essential sources of context. However, whenever users or applications are concerned with objects, and their site or spatial relationships, location models or spatial models are necessary to form a model of the environment. This paper investigates the area of context-aware messaging and addressing services in diverse IoT applications. The paper examines the notion of context and the use of context within the data exchanged by the sensors in an IoT application for messaging and addressing purposes. Based on the importance and need for context of the information, we identify three critical categories of new IoT applications for context-aware messaging and addressing services: emergency applications, applications for guiding and reminding, and social networking applications. For this purpose, a representative range of systems is reviewed according to the application type, the technology being used, their architecture, the context information, and the services they provide. This survey assists the work of defining an approach for context-aware messaging services domain by discovering the area of context-aware messaging.


2018 ◽  
Vol 53 (4) ◽  
pp. 515-520 ◽  
Author(s):  
T Fiedler ◽  
M Taherishargh

Perlite–metal syntactic foam is a low-cost cellular metal intended for use in automotive impact protection. To test the viability of the material a 2.5 ton drop test was conducted. Impact mass and energy were selected to replicate the conditions of a frontal impact between a large passenger vehicle and a crash cushion. A hollow syntactic foam cylinder was manufactured to decelerate the drop weight in a controlled manner. Accelerometers and high-speed imaging were utilized to evaluate the performance of the energy absorbing element.


Sign in / Sign up

Export Citation Format

Share Document