scholarly journals Neurofunctional Symmetries and Asymmetries during Voluntary out-of- and within-Body Vivid Imagery Concurrent with Orienting Attention and Visuospatial Detection

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1549
Author(s):  
Amedeo D’Angiulli ◽  
Darren Kenney ◽  
Dao Anh Thu Pham ◽  
Etienne Lefebvre ◽  
Justin Bellavance ◽  
...  

We explored whether two visual mental imagery experiences may be differentiated by electroencephalographic (EEG) and performance interactions with concurrent orienting external attention (OEA) to stimulus location and subsequent visuospatial detection. We measured within-subject (N = 10) event-related potential (ERP) changes during out-of-body imagery (OBI)—vivid imagery of a vertical line outside of the head/body—and within-body imagery (WBI)—vivid imagery of the line within one’s own head. Furthermore, we measured ERP changes and line offset Vernier acuity (hyperacuity) performance concurrent with those imagery, compared to baseline detection without imagery. Relative to OEA baseline, OBI yielded larger N200 and P300, whereas WBI yielded larger P50, P100, N400, and P800. Additionally, hyperacuity dropped significantly when concurrent with both imagery types. Partial least squares analysis combined behavioural performance, ERPs, and/or event-related EEG band power (ERBP). For both imagery types, hyperacuity reduction correlated with opposite frontal and occipital ERP amplitude and polarity changes. Furthermore, ERP modulation and ERBP synchronizations for all EEG frequencies correlated inversely with hyperacuity. Dipole Source Localization Analysis revealed unique generators in the left middle temporal gyrus (WBI) and in the right frontal middle gyrus (OBI), whereas the common generators were in the left precuneus and middle occipital cortex (cuneus). Imagery experiences, we conclude, can be identified by symmetric and asymmetric combined neurophysiological-behavioural patterns in interactions with the width of attentional focus.

Author(s):  
Nada Chaari ◽  
Hatice Camgöz Akdağ ◽  
Islem Rekik

Abstract The estimation of a connectional brain template (CBT) integrating a population of brain networks while capturing shared and differential connectional patterns across individuals remains unexplored in gender fingerprinting. This paper presents the first study to estimate gender-specific CBTs using multi-view cortical morphological networks (CMNs) estimated from conventional T1-weighted magnetic resonance imaging (MRI). Specifically, each CMN view is derived from a specific cortical attribute (e.g. thickness), encoded in a network quantifying the dissimilarity in morphology between pairs of cortical brain regions. To this aim, we propose Multi-View Clustering and Fusion Network (MVCF-Net), a novel multi-view network fusion method, which can jointly identify consistent and differential clusters of multi-view datasets in order to capture simultaneously similar and distinct connectional traits of samples. Our MVCF-Net method estimates a representative and well-centered CBTs for male and female populations, independently, to eventually identify their fingerprinting regions of interest (ROIs) in four main steps. First, we perform multi-view network clustering model based on manifold optimization which groups CMNs into shared and differential clusters while preserving their alignment across views. Second, for each view, we linearly fuse CMNs belonging to each cluster, producing local CBTs. Third, for each cluster, we non-linearly integrate the local CBTs across views, producing a cluster-specific CBT. Finally, by linearly fusing the cluster-specific centers we estimate a final CBT of the input population. MVCF-Net produced the most centered and representative CBTs for male and female populations and identified the most discriminative ROIs marking gender differences. The most two gender-discriminative ROIs involved the lateral occipital cortex and pars opercularis in the left hemisphere and the middle temporal gyrus and lingual gyrus in the right hemisphere.


Author(s):  
Takahiro Yamanoi ◽  
◽  
Yoshinori Tanaka ◽  
Mika Otsuki ◽  
Shin-ichi Ohnishi ◽  
...  

The authors measure electroencephalograms (EEGs) from a subject looking at line drawings of body parts and recalling their names silently. The equivalent current dipole source localization (ECDL) method is applied to the event related potentials (ERPs): summed EEGs. As the dominant language area of the subject is considered to be in the right hemisphere in the previous research study, ECDs are localized to the right middle temporal gyrus: the angular gyrus. Then ECDs are localized to the right fusiform gyrus, the right middle temporal pole (TEP), and the right inferior temporal white matter (TWM). ECDs are located in the ventral pathway. The areas are related to the integrated process of visual recognition of pictures and the recalling of words. Some of these areas are also related to image recognition and word generation.


2019 ◽  
Vol 110 (6) ◽  
pp. 489-500 ◽  
Author(s):  
Maiko A. Schneider ◽  
Poli M. Spritzer ◽  
Jee Su Suh ◽  
Luciano Minuzzi ◽  
Benicio N. Frey ◽  
...  

For transgender individuals, gender-affirming surgery (GAS) and cross-sex hormone therapy (CSHT) are part of the gender transition process. Scientific evidence supporting the maintenance of CSHT after GAS-related gonadectomy is accumulating. However, few data are available on the impact of CSHT on the brain structure following hypogonadism. Thus, we aimed to investigate links between estradiol and brain cortical thickness (CTh) and cognition in 18 post-gonadectomy transgender women using a longitudinal design. For this purpose, the participants underwent a voluntary period of CSHT washout of at least 30 days, followed by estradiol re-institution for 60 days. High-resolution T1-weighted brain images, hormonal measures, working and verbal memory were collected at 2 time points: on the last day of the washout (t1) and on the last day of the 2-month CSHT period (t2). Between these 2 time points, CTh increased within the left precentral gyrus and right precuneus but decreased within the right lateral occipital cortex. However, these findings did not survive corrections of multiple comparisons. Nevertheless, there was a significant negative correlation between changes in estradiol levels and changes in CTh. This effect was evident in the left superior frontal gyrus, the left middle temporal gyrus, the right precuneus, the right superior temporal gyrus, and the right pars opercularis. Although there was an improvement in verbal memory following hypogonadism correction, we did not observe a significant relationship between changes in memory scores and CTh. Altogether, these findings suggest that there is a link between estradiol and CTh.


2018 ◽  
Author(s):  
NW Bailey ◽  
G Freedman ◽  
K Raj ◽  
CM Sullivan ◽  
NC Rogasch ◽  
...  

AbstractAttention is a vital executive function, since other executive functions are largely dependent on it. Mindfulness meditation has been shown to enhance attention. However, the components of attention altered by meditation and the related neural activities are underexplored. In particular, the contributions of inhibitory processes and sustained attention are not well understood. Additionally, it is not clear whether improvements in attention are related to increases in the strength of typically activated brain areas, or the recruitment of additional or alternative brain areas. To address these points, 34 meditators were compared to 28 age and gender matched controls during electroencephalography (EEG) recordings of neural activity during a Go/Nogo response inhibition task. This task generates a P3 event related potential, which is related to response inhibition processes in Nogo trials, and attention processes across both trial types. Compared with controls, meditators were more accurate at responding to Go and Nogo trials. Meditators showed a more frontally distributed P3 to both Go and Nogo trials, suggesting more frontal involvement in sustained attention rather than activity specific to response inhibition. Unexpectedly, meditators also showed increased positivity over the right parietal cortex prior to visual information reaching the occipital cortex. Both results were positively related to increased accuracy across both groups. The results suggest that meditators have an increased capacity to modulate a range of neural processes in order to meet task requirements, including higher order processes, and sensory anticipation processes. This increased capacity may underlie the improved attentional function observed in mindfulness meditators.


2020 ◽  
Vol 10 (1) ◽  
pp. 63-71
Author(s):  
Nurhaeda Abbas ◽  
Anggraini Sukmawati ◽  
Muhammad Syamsun

Today the performance measurement of Muhammadiyah Luwuk uUniversity’s performance has not formulated yet based on University’s vision and mission. It will affect the strategic steps needed and performance improvement efforts in the future.  Human resource scorecard is the right system to be applied in Muhammadiyah Luwuk University. The purpose of this study is to designed a performance measurement system at Muhammadiyah Luwuk University using the Human Resource Scorecard with four perspectives: stakeholder, academic management and kemuhammadiyaan, operational and innovation, as well as and learning. Data was analyzed by analytical hierarchy process method. This research was conducted by distributing questionnaires, focus group discussions and in-depth interview with stakeholders at Muhammadiyah Luwuk University. The results showed that there were 14 strategic objectives and 33 key performance indicators to be achieved by the priority objectives, which are: empowerment and development of faculty, increased administrative process quality, improved sound budget performance and, improvement of the relationship with stakeholders.


2020 ◽  
Vol 132 (6) ◽  
pp. 2000-2007 ◽  
Author(s):  
Soroush Niketeghad ◽  
Abirami Muralidharan ◽  
Uday Patel ◽  
Jessy D. Dorn ◽  
Laura Bonelli ◽  
...  

Stimulation of primary visual cortices has the potential to restore some degree of vision to blind individuals. Developing safe and reliable visual cortical prostheses requires assessment of the long-term stability, feasibility, and safety of generating stimulation-evoked perceptions.A NeuroPace responsive neurostimulation system was implanted in a blind individual with an 8-year history of bare light perception, and stimulation-evoked phosphenes were evaluated over 19 months (41 test sessions). Electrical stimulation was delivered via two four-contact subdural electrode strips implanted over the right medial occipital cortex. Current and charge thresholds for eliciting visual perception (phosphenes) were measured, as were the shape, size, location, and intensity of the phosphenes. Adverse events were also assessed.Stimulation of all contacts resulted in phosphene perception. Phosphenes appeared completely or partially in the left hemifield. Stimulation of the electrodes below the calcarine sulcus elicited phosphenes in the superior hemifield and vice versa. Changing the stimulation parameters of frequency, pulse width, and burst duration affected current thresholds for eliciting phosphenes, and increasing the amplitude or frequency of stimulation resulted in brighter perceptions. While stimulation thresholds decreased between an average of 5% and 12% after 19 months, spatial mapping of phosphenes remained consistent over time. Although no serious adverse events were observed, the subject experienced mild headaches and dizziness in three instances, symptoms that did not persist for more than a few hours and for which no clinical intervention was required.Using an off-the-shelf neurostimulator, the authors were able to reliably generate phosphenes in different areas of the visual field over 19 months with no serious adverse events, providing preliminary proof of feasibility and safety to proceed with visual epicortical prosthetic clinical trials. Moreover, they systematically explored the relationship between stimulation parameters and phosphene thresholds and discovered the direct relation of perception thresholds based on primary visual cortex (V1) neuronal population excitation thresholds.


Author(s):  
Emanuela Gualdi-Russo ◽  
Natascia Rinaldo ◽  
Alba Pasini ◽  
Luciana Zaccagni

The aims of this study were to develop and validate an instrument to quantitatively assess the handedness of basketballers in basketball tasks (Basketball Handedness Inventory, BaHI) and to compare it with their handedness in daily activities by the Edinburgh Handedness Inventory (EHI). The participants were 111 basketballers and 40 controls. All subjects completed the EHI and only basketballers filled in the BaHI. To validate the BaHI, a voluntary subsample of basketballers repeated the BaHI. Exploratory and confirmatory factor analyses supported a two-factor model. Our results show that: (i) Handedness score (R) in daily actions did not differ between basketball players (R by EHI = 69.3 ± 44.6) and the control group (R by EHI = 64.5 ± 58.6); (ii) basketballers more frequently favored performing certain sport tasks with the left hand or mixed hands (as highlighted by R by BaHI = 50.1 ± 47.1), although their choice was primarily the right hand in everyday gestures; and (iii) this preference was especially true for athletes at the highest levels of performance (R by BaHI of A1 league = 38.6 ± 58.3) and for those playing in selected roles (point guard’s R = 29.4 ± 67.4). Our findings suggest that professional training induces handedness changes in basketball tasks. The BaHI provides a valid and reliable measure of the skilled hand in basketball. This will allow coaches to assess mastery of the ball according to the hand used by the athlete in the different tasks and roles.


2021 ◽  
Vol 11 (3) ◽  
pp. 376
Author(s):  
Carmelo Mario Vicario ◽  
Gabriella Martino ◽  
Alex Marcuzzo ◽  
Giuseppe Craparo

Neuroscience research links alexithymia, the difficulty in identifying and describing feelings and emotions, with left hemisphere dominance and/or right hemisphere deficit. To provide behavioral evidence for this neuroscientific hypothesis, we explored the relationship between alexithymia and performance in a line bisection task, a standard method for evaluating visuospatial processing in relation to right hemisphere functioning. We enrolled 222 healthy participants who completed a version of the 20-item Toronto Alexithymia Scale (TAS-20), which measures alexithymia, and were asked to mark (bisect) the center of a 10-cm horizontal segment. The results document a significant rightward shift in the center of the line in participants with borderline and manifest alexithymia compared with non-alexithymic individuals. The higher the TAS-20 score, the greater the rightward shift in the line bisection task. This finding supports the right hemisphere deficit hypothesis in alexithymia and suggests that visuospatial abnormalities may be an important component of this mental condition.


2006 ◽  
Vol 18 (11) ◽  
pp. 1789-1798 ◽  
Author(s):  
Angela Bartolo ◽  
Francesca Benuzzi ◽  
Luca Nocetti ◽  
Patrizia Baraldi ◽  
Paolo Nichelli

Humor is a unique ability in human beings. Suls [A two-stage model for the appreciation of jokes and cartoons. In P. E. Goldstein & J. H. McGhee (Eds.), The psychology of humour. Theoretical perspectives and empirical issues. New York: Academic Press, 1972, pp. 81–100] proposed a two-stage model of humor: detection and resolution of incongruity. Incongruity is generated when a prediction is not confirmed in the final part of a story. To comprehend humor, it is necessary to revisit the story, transforming an incongruous situation into a funny, congruous one. Patient and neuroimaging studies carried out until now lead to different outcomes. In particular, patient studies found that right brain-lesion patients have difficulties in humor comprehension, whereas neuroimaging studies suggested a major involvement of the left hemisphere in both humor detection and comprehension. To prevent activation of the left hemisphere due to language processing, we devised a nonverbal task comprising cartoon pairs. Our findings demonstrate activation of both the left and the right hemispheres when comparing funny versus nonfunny cartoons. In particular, we found activation of the right inferior frontal gyrus (BA 47), the left superior temporal gyrus (BA 38), the left middle temporal gyrus (BA 21), and the left cerebellum. These areas were also activated in a nonverbal task exploring attribution of intention [Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage, 11, 157–166, 2000]. We hypothesize that the resolution of incongruity might occur through a process of intention attribution. We also asked subjects to rate the funniness of each cartoon pair. A parametric analysis showed that the left amygdala was activated in relation to subjective amusement. We hypothesize that the amygdala plays a key role in giving humor an emotional dimension.


Sign in / Sign up

Export Citation Format

Share Document