scholarly journals Digital Twins-Based Smart Design and Control of Ultra-Precision Machining: A Review

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1717
Author(s):  
Lei Wu ◽  
Jiewu Leng ◽  
Bingfeng Ju

Ultra-Precision Machining (UPM) is a kind of highly accurate processing technology developed to satisfy the manufacturing requirements of high-end cutting-edge products including nuclear energy producers, very large-scale integrated circuits, lasers, and aircraft. The information asymmetry phenomenon widely exists in the design and control of ultra-precision machining. It may lead to inconsistency between the designed performance and operational performance of the UPM equipment on stiffness, thermal stability, and motion accuracy, which result from its design, manufacturing, and control, and determine the form accuracy and surface roughness of machined parts. The performance of the UPM equipment should be improved continuously. It is still challenging to realize the real-time and self-adaptive control, in which building a high-fidelity and computationally efficient digital twin is a valuable solution. Nevertheless, the incorporation of the digital twin technology into the UPM design and control remains vague and sometimes contradictory. Based on a literature search in the Google Scholar database, the critical issues in the UPM design and control, and how to use the digital twin technologies to promote it, are reviewed. Firstly, the digital twins-based UPM design, including bearings module design, spindle-drive module design, stage system module design, servo module design, and clamping module design, are reviewed. Secondly, the digital twins-based UPM control studies, including voxel modeling, process planning, process monitoring, vibration control, and quality prediction, are reviewed. The key enabling technologies and research directions of digital twins-based design and control are discussed to deal with the information asymmetry phenomenon in UPM.

Author(s):  
Farhad Imani ◽  
Bing Yao ◽  
Ruimin Chen ◽  
Prahalada Rao ◽  
Hui Yang

Nowadays manufacturing industry faces increasing demands to customize products according to personal needs. This trend leads to a proliferation of complex product designs. To cope with this complexity, manufacturing systems are equipped with advanced sensing capabilities. However, traditional statistical process control methods are not concerned with the stream of in-process imaging data. Also, very little has been done to investigate nonlinearity, irregularity, and inhomogeneity in image stream collected from manufacturing processes. This paper presents the multifractal spectrum and lacunarity measures to characterize irregular and inhomogeneous patterns of image profiles, as well as detect the hidden dynamics of the underlying manufacturing process. Experimental studies show that the proposed method not only effectively characterizes the surface finishes for quality control of ultra-precision machining but also provides an effective model to link process parameters with fractal characteristics of in-process images acquired from additive manufacturing. This, in turn, will allow a swift response to processes changes and consequently reduce the number of defective products. The proposed fractal method has strong potentials to be applied for process monitoring and control in a variety of domains such as ultra-precision machining, additive manufacturing, and biomanufacturing.


2013 ◽  
Vol 25 ◽  
pp. 157-173 ◽  
Author(s):  
Nam Su Kwak ◽  
Jae Yeol Kim ◽  
Dae Gwang Park

In this study, piezoelectric actuator, flexure guide, power transmission element and control method are considered for nanopositioning system apparatus. The main objectives of this thesis were to develop 2-axis nanostage which enables 2-axis control with the aid of piezoelectric actuator, and to improve the precision of the ultra-precision lathe (UP2) which is responsible for the ductile mode machining of the hardened-brittle material where the machining uses a the single-crystal diamond. Through simulation and experiments on ultra-precision positioning, stability and priority of the nanopositioning system with 2-axis nanostage and control algorithm are developed using Matlab/Simulink. Then the system, is applied to analyze surface morphology of the titanium alloy (Ti-6Al-4V)


Author(s):  
Linyu Lin ◽  
Paridhi Athe ◽  
Pascal Rouxelin ◽  
Nam Dinh ◽  
Jeffrey Lane

Abstract In this work, a Nearly Autonomous Management and Control (NAMAC) system is designed to diagnose the reactor state and provide recommendations to the operator for maintaining the safety and performance of the reactor. A three layer-hierarchical workflow is suggested to guide the design and development of the NAMAC system. The three layers in this workflow corresponds to knowledge base, digital twin developmental layer (for different NAMAC functions), and NAMAC operational layer. Digital twin in NAMAC is described as knowledge acquisition system to support different autonomous control functions. Therefore, based on the knowledge base, a set of digital twin models is trained to determine the plant state, predict behavior of physical components or systems, and rank available control options. The trained digital twin models are assembled according to NAMAC operational workflow to support decision-making process in selecting the optimal control actions during an accident scenario. To demonstrate the capability of the NAMAC system, a case study is designed, where a baseline NAMAC is implemented for operating a simulator of the Experimental Breeder Reactor II (EBR-II) during a single loss of flow accident. Training database for development of digital twin models is obtained by sampling the control parameters in the GOTHIC data generation engine. After the training and testing, the digital twins are assembled into a NAMAC system according to the operational workflow. This NAMAC system is coupled with the GOTHIC plant simulator, and a confusion matrix is generated to illustrate the accuracy and robustness of implemented NAMAC system. It is found that within the training databases, NAMAC can make reasonable recommendations with zero confusion rate. However, when the scenario is beyond the training cases, the confusion rate increases, especially when the scenarios are more severe. Therefore, a discrepancy checker is added to detect unexpected reactor states and alert operators for safety-minded actions.


2020 ◽  
Vol 10 (13) ◽  
pp. 4482 ◽  
Author(s):  
Adrien Bécue ◽  
Eva Maia ◽  
Linda Feeken ◽  
Philipp Borchers ◽  
Isabel Praça

In the context of Industry 4.0, a growing use is being made of simulation-based decision-support tools commonly named Digital Twins. Digital Twins are replicas of the physical manufacturing assets, providing means for the monitoring and control of individual assets. Although extensive research on Digital Twins and their applications has been carried out, the majority of existing approaches are asset specific. Little consideration is made of human factors and interdependencies between different production assets are commonly ignored. In this paper, we address those limitations and propose innovations for cognitive modeling and co-simulation which may unleash novel uses of Digital Twins in Factories of the Future. We introduce a holistic Digital Twin approach, in which the factory is not represented by a set of separated Digital Twins but by a comprehensive modeling and simulation capacity embracing the full manufacturing process including external network dependencies. Furthermore, we introduce novel approaches for integrating models of human behavior and capacities for security testing with Digital Twins and show how the holistic Digital Twin can enable new services for the optimization and resilience of Factories of the Future. To illustrate this approach, we introduce a specific use-case implemented in field of Aerospace System Manufacturing.


2014 ◽  
Vol 687-691 ◽  
pp. 476-479 ◽  
Author(s):  
Ya Ping Fan

Ultra-precision machining technology is adapt to the development of modern technology a new technology of mechanical processing, the new achievement of the development of the integrated application of the mechanical technology and modern electronic technology, measurement technology and computer technology in advanced control, testing method, etc., makes a further improve the precision of machining. At present the increasing maturity of the ultra precision machining, has formed a series, it include ultra precision cutting, super precision grinding and super precision grinding and super precision special processing, etc. Ultra-precision machining to high precision, high efficiency, large-scale, miniaturization, intelligent, process integration, the integration of online processing detection, such as green direction.


Author(s):  
Akhilnandh Ramesh ◽  
Zhaojun Qin ◽  
Yuqian Lu

Abstract Manufacturing industries are moving towards mass personalization, which refers to the rapid production of individualized products, with large scale efficiencies. This shift from push-type mass customization to pull-type mass personalization will pose critical operational challenges to manufacturing businesses, with complexities ranging from effective requirements elicitation to design, manufacturing, commissioning and after-sales support. Aiming at addressing these challenges, a feasible operational framework for enabling efficient manufacturing automation for mass personalization is proposed in this paper. A key element of this operational framework is the Digital Thread, which streamlines information flow associated with design, manufacturing, maintenance and servicing of a personalized product, each of which are represented as Digital Twins. An As-Designed Digital Twin is created from the beginning of the product co-design process, which then evolves into the subsequent design and manufacturing process and systems resulting in As-Designed Digital Twin evolving to As-Planned Digital Twin and then to As-Built Digital Twin. The personalized product, after it’s commissioning and installation constitutes the As-Maintained Digital Twin of the product, which stores product data related to field performance. The data exchange and communications between these Digital Twins that reside in the various departments of the organization and the management systems create a seamless Digital Thread, capturing the lifecycle information of each personalized product. Personalized product is proposed to be developed through a self-organizing shopfloor, working on a multi-agent mechanism and controlled by a central agent control algorithm, which can coordinate and provide individualized process plans. The Digital Twins, interlinked by a Digital Thread and realized by a self-organizing shopfloor, thus result in increased level of automated control in engineering and manufacturing. To validate the feasibility of this proposed framework, we tested the information flow in the Digital Thread with a case study in the construction industry. Finally the challenges faced by such an automation framework and the area of future work are also discussed.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Robert Kazała ◽  
Sławomir Luściński ◽  
Paweł Strączyński ◽  
Albena Taneva

This article presents the most valuable and applicable open-source tools and communication technologies that may be employed to create models of production processes by applying the concept of Digital Twins. In recent years, many open-source technologies, including tools and protocols, have been developed to create virtual models of production systems. The authors present the evolution and role of the Digital Twin concept as one of the key technologies for implementing the Industry 4.0 paradigm in automation and control. Based on the presented structured review of valuable open-source software dedicated to various phases and tasks that should be realised while creating the whole Digital Twin system, it was demonstrated that the available solutions cover all aspects. However, the dispersion, specialisation, and lack of integration cause this software to usually not be the first choice to implement DT. Therefore, to successfully create full-fledged models of Digital Twins by proceeding with proposed open-source solutions, it is necessary to make additional efforts due to integration requirements.


2020 ◽  
Vol 20 (3) ◽  
pp. 243-251
Author(s):  
I. A. Lagerev ◽  
V. I. Tarichko ◽  
A. V. Panfilov

Introduction. The paper considers the creation and application of digital twins at various stages of the life cycle of mobile transport and transshipment rope complexes (mobile ropeways), the equipment of which is mounted on the basis of wheeled or tracked chassis of high load capacity. The work objective is to improve safety in using such transport systems based on real-time forecasting of potential failures. This will prevent the occurrence of emergencies in a timely manner. Materials and Methods. The structure of the digital twin of the mobile transport and transshipment rope complex is proposed. Approaches to the analysis of ongoing work processes in order to prevent accidents have been developed. They are based on simulation modeling of the system dynamics using new complex mathematical models built through the system approach. Results. The developed method was tested on a large-scale layout of a mobile transport and transshipment rope complex created by 3D printing methods. A mathematical model of this system was developed; it was used to construct a digital double of the experimental model. The possibility of predicting failures in the layout is shown experimentally through the example of a rope slipping case. To do this, the actual value of the load suspension point coordinate obtained through the video stream processing method was compared to the predicted value calculated using a digital twin.Discussion and Conclusions. The research results provide the creation of an industrial digital twin of a mobile transport and transshipment rope complex mounted on cross-country wheeled chassis.


2021 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Javier Argota Sánchez-Vaquerizo

Large-scale microsimulations are increasingly resourceful tools for analysing in detail citywide effects and alternative scenarios of our policy decisions, approximating the ideal of ‘urban digital twins’. Yet, these models are costly and impractical, and there are surprisingly few published examples robustly validated with empirical data. This paper, therefore, presents a new large-scale agent-based traffic microsimulation for the Barcelona urban area using SUMO to show the possibilities and challenges of building these scenarios based on novel fine-grained empirical big data. It combines novel mobility data from real cell phone records with conventional surveys to calibrate the model comparing two different dynamic assignment methods for getting an operationally realistic and efficient simulation. Including through traffic and the use of a stochastic adaptive routing approach results in a larger 24-hour model closer to reality. Based on an extensive multi-scalar evaluation including traffic counts, hourly distribution of trips, and macroscopic metrics, this model expands and outperforms previous large-scale scenarios, which provides new operational opportunities in city co-creation and policy. The novelty of this work relies on the effective modelling approach using newly available data and the realistic robust evaluation. This allows the identification of the fundamental challenges of simulation to accurately capture real-world dynamical systems and to their predictive power at a large scale, even when fed by big data, as envisioned by the digital twin concept applied to smart cities.


Sign in / Sign up

Export Citation Format

Share Document