scholarly journals Cobalt Oxide on a Nanoporous TUD-1 Catalyst for Methylene Blue Dye Interaction DFT Studies and Degradation

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1754
Author(s):  
Muthusamy Poomalai Pachamuthu ◽  
Sambath Baskaran ◽  
Chandrakumar Manivannan ◽  
Somasundaram Chandra Kishore ◽  
Stefano Bellucci ◽  
...  

Fenton and Fenton-like advanced oxidation processes (AOP) have been substantially utilized in wastewater treatment for the removal of organic contaminants. The present investigation explores the catalytic activity of cobalt dispersed over nanoporous silicate material (CoO/TUD-1), TUD-1, for the Fenton-type degradation of methylene blue (MB) dye present in wastewater, with hydrogen peroxide (H2O2) as an oxidant. The catalyst, which was prepared using the hydrothermal method, was characterized using analytical and spectroscopic techniques, such as X-ray diffraction (XRD), N2 adsorption–desorption isotherms, UV-visible diffuse reflectance (DR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR). The results indicated that the CoO/TUD-1 possessed three-dimensional structures with a high surface area and a pore diameter capable of the uniform dispersion of cobalt species. Density functional theory (DFT) simulations were performed to study the most stable tetra coordinate adsorption configuration of a single Co atom on amorphous SiO2. To understand the geometric and electronic structure of this configuration, electron density differences, Bader charge, and partial density of states were examined. The results obtained from the DFT calculations confirmed the occurrence of electron transfer from the Co atom to the amorphous SiO2. The calculated adsorption energy was found to be -1.58 eV, which indicated that the MB dye was strongly adsorbed by parallel configuration mode and degraded more easily. Further, the addition of a 0.1g/L dose of the prepared CoO /TUD degraded the MB dye effectively (~95%) within 240 min of contact. Thus, CoO/TUD-1 is a potential material for the removal of organic contaminants and the degradation of dyes in wastewater treatment.

Author(s):  
Bansura Banu ◽  
Mercy Jennifer ◽  
Udith Ferdila

Abstract The Graphene Oxide (GO) and GO-Zinc Oxide (GO-ZnO) nanocomposite were prepared using simplified techniques with modified Hummer’s and solvothermal methods for photocatalytic application. In a comparative study, the optimized geometries, binding energies, electronic properties, non-linear optical properties and density of states of GO-ZnO were calculated using density functional theory (DFT) calculations with B3LYP method at 6-31G (d,p) and LanL2DZ basis sets to examine the binding site of a methylene blue (MB) dye systematically. The result of Natural bond orbital (NBO) analysis revealed the effective charge transfer and also explained the mechanism and efficiency of the photocatalytic activity of GO-ZnO. Density of states supported the strong interaction of MB with the GO-ZnO leading to the degradation of the MB dye. The attained theoretical results depict the existence of n → σ*, n → n* and σ → σ* interactions, improved charge transfer, reduced band gap which establish the use of GO-ZnO in the visible light photocatalytic performance. Characterization methods such as XRD, FTIR and UV were carried out to support our theoretical results. The XRD results confirmed the particle size of 21 nm with inter layer spacing of 0.87 nm. FTIR spectroscopy indicated the characteristic bands related to the elements in GO-ZnO. The higher electrical conductivity is studied using UV-Vis spectral analysis. The calculated results show good agreements with experimental observations reveal that the GO-ZnO has good photocatalytic behavior.


Plasma ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 59-91 ◽  
Author(s):  
Emile Salomon Massima Mouele ◽  
Jimoh. O. Tijani ◽  
Milua Masikini ◽  
Ojo. O. Fatoba ◽  
Chuks P. Eze ◽  
...  

Advanced oxidation technologies (AOTs) focusing on nonthermal plasma induced by dielectric barrier discharge are adequate sources of diverse reactive oxygen species (ROS) beneficial for water and wastewater treatment. In this study, indigo, peroxytitanyl sulphate and terephthalic acid methods were used to approximate the concentrations of O3, H2O2 and OH produced in a double cylindrical dielectric barrier discharge (DCDBD) plasma configuration. The effect of pH and scavengers as well as the amount of chemical probes on the generation of oxidants was investigated. The efficiency of the DCDBD reactor was further evaluated using methylene blue (MB) as model pollutant. The results demonstrated that the formation of oxidants O3, H2O2 and OH in the DCDBD reactor was pH-dependent. Furthermore, the presence of scavengers such as phosphates, bicarbonates and carbonates in the solution diminished the amount of OH in the system and hence could impact upon the degree of detoxification of targeted pollutants during water and wastewater treatment. The MB simulated dye was totally decomposed into H2O, dissolved CO2 and simpler aqueous entities. Herein the DCDBD design is an adequate AOT that can be used worldwide for effective decontamination of water and wastewater.


RSC Advances ◽  
2014 ◽  
Vol 4 (61) ◽  
pp. 32249-32255 ◽  
Author(s):  
Nalan Oya San ◽  
Aslı Celebioglu ◽  
Yasin Tümtaş ◽  
Tamer Uyar ◽  
Turgay Tekinay

In our study, an electrospun cellulose acetate nanofibrous web (CA-NFW) was found to be quite effective in immobilizing bacterial cells.


2020 ◽  
Vol 3 (2) ◽  
pp. 94
Author(s):  
Salprima Yudha S. ◽  
Prissana Robkhob ◽  
Tanawat Imboon ◽  
Aswin Falahudin ◽  
Asdim ◽  
...  

A new approach was developed for the green synthesis of ZnO-SiO2 composite and Zn2SiO4 using zinc nitrate and sustainable silica precursor, oil palm (Elaeis guineensis) leaves (OPL). The products were synthesized at two different reaction temperatures through calcination in an open-air furnace at 500 and 1000 °C, respectively, and further identified with an X-ray diffractometry (XRD) analysis. The composite indicated by the presence of peaks at 2θ = 31.7°, 34.4°, 36.3°, 47.6°, 56.6°, and 62.9°, corresponds to ZnO and also revealed amorphous SiO2 at 2θ = 21°. Conversely, Zn2SiO4 was acknowledged at 2θ 25.6°, 31.50°, 34.0°, 39.5°, 48.9°, 56.5° and 65.6°, with crystalline silica at 2θ = 21.9°. The results showed the morphology of both products exhibited similar agglomeration based on scanning electron microscopy (SEM) analysis. Both products (ZnO-SiO2 composite and Zn2SiO4) possessed the capacity to degrade methylene blue (MB) under sunlight irradiation with efficiency of 85.9% and 69.3%, respectively.


2018 ◽  
Vol 15 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Valerie Ling Er Siong ◽  
Chin Wei Lai ◽  
Joon Ching Juan ◽  
Kian Mun Lee ◽  
Bey Fen Leo ◽  
...  

Background: The discharge of effluents from the textile and dyeing industries has been a worldwide concern. Although reduced graphene oxide/titanium dioxide (rGO/TiO2) nanocomposite is a potential candidate for wastewater treatment, the influence of graphene oxide (GO) content on its physico-chemical characteristics and its subsequent photocatalytic capabilities in degrading the organic contaminants has not been well established. Objective: The primary objective of this study was to assess the use of rGO/TiO2 nanocomposites with various GO contents for the removal of toxic methylene blue (MB) dye from aqueous solution. Method: In the present study, rGO/TiO2 nanocomposites were fabricated using various GO contents through a one-step solvothermal method. The effect of GO content on the nanocomposite formation was investigated by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The resulting nanocomposites were evaluated against MB degradation under artificial solar light illumination. Results: Based on the photocatalytic results, the highest removal percentage of MB was achieved by 0.15rGO/TiO2, which was about 1.7 times higher than that of 0.01rGO/TiO2. The enhanced removal efficiency of MB by the nanocomposite with the highest GO content (0.15 g) was attributed to the increased active adsorption sites, which greatly promoted the π- π interaction between the aromatic rings of MB dye and the graphitic skeleton of rGO, as well as the electrostatic interaction between the cationic center of MB molecules and the residual oxygen functionalities of rGO.


Author(s):  
Hassan Wafi Garba ◽  
Abubakar Garba Ashiru ◽  
Rooshan Watanpal ◽  
Mohammed Bello ◽  
Kasimu Abubakar ◽  
...  

Abstract—A novel copper(II) complex nanoparticles catalyst was synthesized via precipitation and calcination. The catalyst was applied for the degradation of methylene blue under UV light irradiation. The catalyst was characterized for its physicochemical and structural properties by XRD, SEM, TEM and FT-IR spectroscopic techniques. XRD studies revealed that the particles were monoclinic single phase crystalline structure, the morphology of the nanostructure was confirmed by SEM while the TEM studies revealed that the particles were FCC. FTIR spectra showed the presence of diverse vibrational functional groups. Photolysis of the methylene blue dye indicates no degradation after 1 hour reaction, while the addition of the copper(II) complex nanoparticles catalyst resulted in the decolouration of the dye by ~94%. The efficiency of the catalyst was attributed to the nanoparticle’s morphology.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
R. M. Mohamed ◽  
E. S. Aazam

CeO2-SiO2nanoparticles were synthesized for the first time by a facile microwave-assisted irradiation process. The effect of irradiation time of microwave was studied. The materials were characterized by N2adsorption, XRD, UV-vis/DR, and TEM. All solids showed mesoporous textures with high surface areas, relatively small pore size diameters, and large pore volume. The X-ray diffraction results indicated that the as-synthesized nanoparticles exhibited cubic CeO2without impurities and amorphous silica. The transmission electron microscopy (TEM) images revealed that the particle size of CeO2-SiO2nanoparticles, which were prepared by microwave method for 30 min irradiation times, was around 8 nm. The photocatalytic activities were evaluated by the decomposition of methylene blue dye under UV light irradiations. The results showed that the irradiation under the microwave produced CeO2-SiO2nanoparticles, which have the best crystallinity under a shorter irradiation time. This indicates that the introduction of the microwave really can save energy and time with faster kinetics of crystallization. The sample prepared by 30 min microwave irradiation time exhibited the highest photocatalytic activity. The photocatalytic activity of CeO2-SiO2nanoparticles, which were prepared by 30 min irradiation times was found to have better performance than commercial reference P25.


Sign in / Sign up

Export Citation Format

Share Document