scholarly journals Enamel Remineralization Competence of a Novel Fluoride-Incorporated Bioactive Glass Toothpaste—A Surface Micro-Hardness, Profilometric, and Micro-Computed Tomographic Analysis

Tomography ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 752-766
Author(s):  
Imran Farooq ◽  
Saqib Ali ◽  
Faraz Ahmed Farooqi ◽  
Jehan AlHumaid ◽  
Mashael Binhasan ◽  
...  

This study aimed to analyze the enamel remineralization efficacy of a novel fluoridated bioactive glass (F-BG) toothpaste compared to a standard fluoride toothpaste. Seventy-two enamel blocks (N = 72) were divided into groups of twenty-four blocks according to the toothpaste exposure—group 1: brushed with distilled water, group 2: brushed with fluoride toothpaste (ColgateTM), and group 3: brushed with F-BG toothpaste (BioMinFTM). Pre-brushing, enamel blocks were demineralized using 6 wt.% citric acid (pH = 2.4). Tooth brushing was performed using a mixture of respective toothpaste and artificial saliva (AS), and each enamel block received 5000 linear strokes. The samples were assessed for surface micro-hardness (to estimate Vickers hardness number, VHN), surface roughness (Ra), and volume loss/gain using micro-computed tomography (micro-CT). The highest increase in the VHN was noticed for group 3 (117.81) followed by group 2 (61.13), and all the intragroup comparisons were statistically significant (p < 0.05). Demineralization increased the Ra values, and a decrease was observed post-remineralization for all the groups. The maximum Ra decrease was observed for group 3 (−223.2 nm) followed by group 2 (−55.6 nm), and all the intragroup comparisons were again statistically significant (p < 0.05). Micro-CT investigation revealed that the enamel volume decreased after demineralization and increased after remineralization among all groups. The F-BG toothpaste showed greater enamel surface micro-hardness (increased VHN), smoother surface (low roughness), and better volume restoration (remineralization) in comparison to the fluoride toothpaste.

Author(s):  
Gozde Serindere ◽  
Ceren Aktuna Belgin ◽  
Kaan Orhan

Background: There are a few studies about the evaluation of maxillary first premolars internal structure with micro-computed tomography (micro-CT). The aim of this study was to assess morphological features of the pulp chamber in maxillary first premolar teeth using micro- CT. Methods: Extracted 15 maxillary first premolar teeth were selected from the patients who were in different age groups. The distance between the pulp orifices, the diameter of the pulp and the width of the pulp chamber floor were measured on the micro-CT images with the slice thickness of 13.6 µm. The number of root canal orifices and the presence of isthmus were evaluated. Results: The mean diameter of orifices was 0.73 mm on the buccal side while it was 0.61 mm on palatinal side. The mean distance between pulp orifices was 2.84 mm. The mean angle between pulp orifices was -21.53°. The mean height of pulp orifices on the buccal side was 4.32 mm while the mean height of pulp orifices on the palatinal side was 3.56 mm. The most observed shape of root canal orifices was flattened ribbon. No isthmus was found in specimens. Conclusion: Minor anatomical structures can be evaluated in more detail with micro-CT. The observation of the pulp cavity was analyzed using micro-CT.


2019 ◽  
Vol 64 (No. 12) ◽  
pp. 531-538
Author(s):  
JW Yun ◽  
SY Heo ◽  
MH Lee ◽  
HB Lee

Critical-sized bone defects are a difficult problem in both human and veterinary medicine. To address this issue, synthetic graft materials have been garnering attention. Abundant in vitro studies have proven the possibilities of poly(lactic-acid) (PLA) scaffolds and poly(lactide-co-glycolide)/hydroxyapatite (PLGA/HAp) nanofibres for treating bone defects. The present study aimed at conducting an in vivo assessment of the biological performance of a three dimensional (3D)-printed PLA scaffold filled with a PLGA/HAp nanofibrous scaffold to estimate its potential applications in bone defect reconstruction surgery. Defects were created in a 20 mm-long region of the radius bone. The defects created on the right side in six Beagle dogs (n = 6) were left untreated (Group 1). The defects on the left side (n = 6) were filled with 3D-printed PLA scaffolds incorporated with PLGA/Hap nanofibres with gelatine (Group 2). The other six Beagle dog defects were made bilaterally (n = 12) and filled with the same material as that used in Group 2 along with recombinant bone morphogenetic protein 2 (rhBMP-2) (Group 3). Both the radiological and histological examinations were performed for observing the reaction of the scaffold and the bone. Micro-computed tomography (CT) was utilised for the evaluation of the bone parameters 20 weeks after the experiment. The radiological and histological results revealed that the scaffold was biodegradable and was replaced by new bone tissue. The micro-CT revealed that the bone parameters were significantly (P &lt; 0.05) increased in Group 3. Based on these results, our study serves as a foundation for future studies on bone defect treatment using synthetic polymeric scaffolds.


2009 ◽  
Vol 118 (5) ◽  
pp. 391-396 ◽  
Author(s):  
Robert Nason ◽  
Dong H. Lee ◽  
Jae Y. Jung ◽  
Richard A. Chole

Objectives: Chronic otitis media and cholesteatomas cause hearing loss as a result of bony erosion. This bone resorption is known to be more aggressive when cholesteatomas become infected. The most common organism isolated from both diseases is the gram-negative bacterium Pseudomonas aeruginosa. Lipopolysaccharide (LPS), a major virulence factor found in the gram-negative bacterial cell wall, is well known to incite inflammatory bone resorption. The mechanisms underlying this process, however, are poorly understood. In this study, we developed a mouse model of calvarial osteolysis in which resorption was reliably imaged by plain radiography and micro–computed tomography (micro-CT). Methods: A murine calvarial model was developed to study bone resorption induced by P aeruginosa LPS. Calvariae from wild-type and knockout mice used in this model were imaged by plain radiography and micro-CT. Results: A high degree of correlation between plain radiography and micro-CT was identified (R2 = 0.8554). Furthermore, maximal LPS-induced bone resorption required functioning toll-like receptor (TLR) 2, TLR4, and myeloid differentiation factor 88 (MyD88). Conclusions: We have developed a successful model of inflammatory osteolysis in which plain radiography can reliably delineate induced bone resorption. In vivo, we have shown that P aeruginosa LPS signals via TLR2, as well as TLR4 through MyD88.


2017 ◽  
Vol 42 (2) ◽  
pp. 203-214 ◽  
Author(s):  
SH Han ◽  
SH Park

SUMMARY Purpose: This study compared the internal adaptation of bulk-fill composite restorations in class II cavities and explored the relationship between internal adaptation and polymerization shrinkage or stress. Methods and Materials: Standardized mesio-occluso-distal cavities were prepared in 40 extracted human third molars and randomly divided into five groups (n=8). After having been applied by total-etch XP bond (Dentsply Caulk, Milford, DE, USA) and light curing, the teeth were restored with the following resin composites: group 1, Filtek Z350 (3M ESPE, St. Paul, MN, USA); group 2, SDR (Dentsply Caulk, Milford, DE, USA) + Z350; group 3, Venus Bulk Fill (Heraeus Kulzer, Dormagen, Germany) + Z350; group 4, Tetric N-Ceram Bulk Fill (Ivoclar Vivadent, Schaan, Liechtenstein); and group 5, SonicFill (Kerr, West Collins, Orange, CA, USA). After thermo-mechanical load cycling, cross-sectional microcomputerized tomography (micro-CT) images were taken. Internal adaptation was measured as imperfect margin percentage (IM%), which was the percentage of defective margin length relative to whole margin length. On the micro-CT images, IM% was measured at five interfaces. Linear polymerization shrinkage (LS) and polymerization shrinkage stress (PS) were measured on each composite with a custom linometer and universal testing machine. To explore the correlation of IM% and LS or PS, the Pearson correlation test was used. Results: The IM% of the gingival and pulpal cavity floors were inferior to those of the cavity walls. The IM% values of the groups were found to be as follows: group 5 ≤ groups 1 and 4 ≤ group 2 ≤ group 3. The correlation analysis showed that the p value was 0.006 between LS and IM% and 0.003 between PS and IM%, indicating significant correlations (p&lt;0.05). Conclusion: Flowable bulk-fill composites had a higher IM% and polymerization shrinkage stress than did packable bulk-fill and hybrid composites. In class II composite restoration, the gingival floor of the proximal box and pulpal floor of the cavity had higher IM% than did the buccal and lingual walls of the proximal box. LS and PS, which were measured under compliance-allowed conditions, were significantly related to internal adaptation.


2019 ◽  
Vol 13 (04) ◽  
pp. 547-555 ◽  
Author(s):  
Stanley Chibuzor Onwubu ◽  
Phumlani Selby Mdluli ◽  
Shenuka Singh ◽  
Vishal Bharuth ◽  
Mokgadi Ursula Makgobole

Abstract Objectives The study reports on the effectiveness of a ball-milled nanosized titanium dioxide composite (EB@TiO2) for DH management in comparison with commercial desensitizing paste with and without saliva. Materials and Methods  Forty-nine dentine specimens were prepared from extracted bovine anterior teeth. Twenty-one of the specimens were brushed with three desensitizing toothpaste for 7 days, namely: Group 1; EB@TiO2, Group 2; Colgate Pro-relief; and Group 3; Sensodyne repair (n = 7). Twenty-four specimens were brushed with the toothpaste for 7 days and stored in artificial saliva (control) after brushing. Each specimen was subsequently posttreated in citric acid solution to test its stability in acidic condition. Field scanning electron microscope was used to evaluate the effectiveness of the dentine tubules occlusion. The biocompatibility of the composite was tested using BHK21 cell line. Statistical Analysis One-way analysis of variance was used to analyze the percentage occluded area ratio values for all specimens (α = 0.05). Independent t-test was further used to evaluate the occlusion differences with saliva and without saliva. Results and Conclusions The number of dentine tubules decreased significantly after 7 days of brushing. Overall, the occlusion observe for EB@TiO2 were significantly better than for Colgate Pro-relief and Sensodyne repair (p < 0.05). BHK21 assay suggested that composite had no significant effect on the BHK21 cell line. This study demonstrated that the composite effectively occluded open dentine tubules within 7 days of brushing.


2020 ◽  
Vol 16 (3) ◽  
pp. 137-143
Author(s):  
Jong Seong Kim ◽  
Pil Seon Eo ◽  
Joon Seok Lee ◽  
Jeong Woo Lee ◽  
Kang Young Choi ◽  
...  

Background: Seromas are caused by leakage of lymphovascular fluid into postoperative dead space. This is the most common complication after reconstructive breast surgery. The purpose of this study is to demonstrate the utility of seroma-preventing substances by using a collagen-enhanced fibrin sealant on a rat mastectomy model.Methods: Thirty-six Sprague-Dawley rats were divided into three groups. After mastectomy and axillary lymph node dissection, normal saline was applied to the dead spaces in group 1 (control). In group 2, a collagen-enhanced fibrin sealant was applied, and in group 3, triamcinolone acetate solution was applied. Afterwards, the amount of seroma was measured by three-dimensional micro-computed tomography (3D micro-CT) volumetry analysis and manual aspiration after 7 and 14 days, respectively.Results: The volume of seroma were significantly reduced in groups 2 and 3 compared to group 1 in both 3D micro-CT volumetry analysis and manual aspiration on postoperative day 7 (P<0.001). In addition, the results observed in day 14 also showed a decrease in the amount of seroma analyzed by CT in groups 2 and 3 compared to group 1 (P<0.05). In histopathologic examination inflammation was observed more frequently in group 1 and angiogenesis was more active in group 2.Conclusion: The use of a collagen-enhanced fibrin sealant (Collaseal) is as effective as triamcinolone control injected in a rat mastectomy model.


2020 ◽  
Vol 90 (4) ◽  
pp. 524-531 ◽  
Author(s):  
Po-Jung Chen ◽  
Joy H. Chang ◽  
Eliane H. Dutra ◽  
Ahmad Ahmida ◽  
Ravindra Nanda ◽  
...  

ABSTRACT Objective To determine the effect of alveolar decortication on orthodontically induced root resorption. Materials and Methods A total of 24 male Wistar rats (14 week old) were used. The rats were randomly divided into one of the following three groups: group 1 (control group), orthodontic tooth movement (OTM) for 2 weeks; group 2, OTM for 2 weeks + two alveolar decortications (2AD); group 3, OTM for 2 weeks + four alveolar decortications (4AD). The first molar was moved mesially for 2 weeks. Micro computed tomography was used to analyze root volume. In addition, histological sections were stained with Tartrate Resistant Acid Phosphatase (TRAP) to quantify the osteoclast number. Results The buccal root volume in OTM + 4AD group was decreased by 8.92% and 6.11% when compared with the OTM-only group and OTM + 2AD group, respectively. Similarly, the other four root volumes in the OTM + 4AD group was decreased by 8.99% and 5.24% when compared with the OTM-only group and OTM + 2AD group, respectively. There was a decrease in buccal root density in the OTM + 4AD group by 4.66% and 3.56% when compared with the OTM-only group and the OTM + 2AD group, respectively. In addition, there was an increase in the number of osteoclasts by 195.73% and 98.74% in OTM + 4AD group in comparison with the OTM and OTM + 2AD group. Conclusions The amount of orthodontically induced root resorption was positively correlated with the extent of surgical injury used to accelerate orthodontic tooth movement.


2018 ◽  
Vol 23 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Henrique M. Villela ◽  
Mario Vedovello Filho ◽  
Heloísa C. Valdrighi ◽  
Milton Santamaria-Jr ◽  
Carolina Carmo de Menezes ◽  
...  

ABSTRACT Objective: This study aimed at evaluating whether changes in the insertion angle is a determining factor in the positioning of the miniscrews body in a region with larger interradicular space in the posterior maxilla. Methods: Analysis of 60 posterior maxillary quadrants were made using images obtained by means of cone-beam computed tomographic image (CBCT), with 0.076-mm voxel, which presented a real miniscrew inserted in the mesial region of the maxillary first molars, serving as reference point for the placement of the virtual miniscrews. Measurements of the distances between roots were made in three points on the body of the virtual miniscrews (A, B and C), at four different angulations, 70o, 60o, 50o and 40o (T1 to T4), in relation to the long axis of the second premolar. This evaluation was made in four groups, selected in accordance with the disposition of the roots of the second premolars and first molars: Group 1 (all types of roots), Group 2 (convergent roots), Group 3 (divergent roots) and Group 4 (parallel roots). Results: There were no statistically significant differences in the measurements of points A, B and C, at the different angles (70o, 60o, 50o and 40o) and in the different groups (p > 0.05). Conclusions: Changes in the insertion angle is not a determinant factor in the positioning of miniscrews body in regions with larger interradicular space in posterior maxilla.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yoon-Ki Lee ◽  
Puneet Wadhwa ◽  
HongXin Cai ◽  
Sung-Uk Jung ◽  
Bing Cheng Zhao ◽  
...  

The aim of this study was to evaluate the potential of tooth biomaterials as bone graft biomaterials for bone healing in rabbits. We prepared tooth biomaterial and platelet-rich fibrin (PRF) to fill the round-shaped defect in the skull of New Zealand white rabbits. These cranial defects were treated with different conditions as follows: group 1, a mixture of tooth biomaterials and platelet-rich fibrin (PRF); group 2, only tooth biomaterials; group 3, only PRF; and group 4, the unfilled control group. Specimens of the filled sites were harvested for analysis with microscopic computerized tomography (micro-CT) and histomorphology at 4 and 8 weeks. As a result of micro-CT, at 4 weeks, the bone volume percentages in groups 1 and 2 were 50.33 ± 6.35 and 57.74 ± 3.13 , respectively, and that in the unfilled control group was 42.20 ± 10.53 ( p = 0.001 ). At 8 weeks, the bone volume percentages in groups 1 and 2 were 53.73 ± 9.60 and 54.56 ± 8.44 , respectively, and that in the unfilled control group was 37.86 ± 7.66 ( p = 0.002 ). The difference between the experimental group 3 and the unfilled control group was not statistically significant. Histomorphologically, the total new bone was statistically different.


Sign in / Sign up

Export Citation Format

Share Document