scholarly journals Cellular Uptake and Toxicological Effects of Differently Sized Zinc Oxide Nanoparticles in Intestinal Cells

Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 96
Author(s):  
Anna Mittag ◽  
Christian Hoera ◽  
Alexander Kämpfe ◽  
Martin Westermann ◽  
Jochen Kuckelkorn ◽  
...  

Due to their beneficial properties, the use of zinc oxide nanoparticles (ZnO NP) is constantly increasing, especially in consumer-related areas, such as food packaging and food additives, which is leading to an increased oral uptake of ZnO NP. Consequently, the aim of our study was to investigate the cellular uptake of two differently sized ZnO NP (<50 nm and <100 nm; 12–1229 µmol/L) using two human intestinal cell lines (Caco-2 and LT97) and to examine the possible resulting toxic effects. ZnO NP (<50 nm and <100 nm) were internalized by both cell lines and led to intracellular changes. Both ZnO NP caused time- and dose-dependent cytotoxic effects, especially at concentrations of 614 µmol/L and 1229 µmol/L, which was associated with an increased rate of apoptotic and dead cells. ZnO NP < 100 nm altered the cell cycle of LT97 cells but not that of Caco-2 cells. ZnO NP < 50 nm led to the formation of micronuclei in LT97 cells. The Ames test revealed no mutagenicity for both ZnO NP. Our results indicate the potential toxicity of ZnO NP after oral exposure, which should be considered before application.

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4896
Author(s):  
Siva Sankar Sana ◽  
Divya Vishambhar Kumbhakar ◽  
Akbar Pasha ◽  
Smita C. Pawar ◽  
Andrews Nirmala Grace ◽  
...  

In this work, we present an ecofriendly, non-hazardous, green synthesis of zinc oxide nanoparticles (ZnO NPs) by leaf extract of Crotalaria verrucosa (C. verrucosa). Total phenolic content, total flavonoid and total protein contents of C. verrucosa were determined. Further, synthesized ZnO NPs was characterized by UV–visible spectroscopy (UV-vis), X-ray diffractometer (XRD), Fourier transform infra-red (FTIR) Spectra, transmission electron microscope (TEM), and Dynamic light scattering (DLS) analysis. UV-vis shows peak at 375 nm which is unique to ZnO NPs. XRD analysis demonstrates the hexagonal phase structures of ZnO NPs. FTIR spectra demonstrates the molecules and bondings associated with the synthesized ZnO NPs and assures the role of phytochemical compounds of C. verrucosa in reduction and capping of ZnO NPs. TEM image exhibits that the prepared ZnO NPs is hexagonal shaped and in size ranged between 16 to 38 nm which is confirmed by DLS. Thermo-gravimetric analysis (TGA) was performed to determine the thermal stability of biosynthesized nanoparticles during calcination. The prepared ZnO NPs showed significant antibacterial potentiality against Gram-positive (S. aureus) and Gram-negative (Proteus vulgaris, Klebsiella pneumoniae, and Escherichia coli) pathogenic bacteria and SEM image shows the generalized mechanism of action in bacterial cell after NPs internalization. In addition, NPs are also found to be effective against the studied cancer cell lines for which cytotoxicity was assessed using MTT assay and results demonstrate highest growth of inhibition at the concentration of 100 µg/mL with IC50 value at 7.07 µg/mL for HeLa and 6.30 µg/mL for DU145 cell lines, in contrast to positive control (C. verrucosa leaf extract) with IC50 of 22.30 µg/mL on HeLa cells and 15.72 µg/mL on DU145 cells. Also, DAPI staining was performed in order to determine the effect on nuclear material due to ZnO NPs treatment in the studied cell lines taking leaf extract as positive control and untreated negative control for comparison. Cell migration assay was evaluated to determine the direct influence of NPs on metastasis that is potential suppression capacity of NPs to tumor cell migration. Outcome of the synthesized ZnO NPs using C. verrucosa shows antimicrobial activity against studied microbes, also cytotoxicity, apoptotic mediated DNA damage and antiproliferative potentiality in the studied carcinoma cells and hence, can be further used in biomedical, pharmaceutical and food processing industries as an effective antimicrobial and anti-cancerous agent.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1662
Author(s):  
Mahadevamurthy Murali ◽  
Nataraj Kalegowda ◽  
Hittanahallikoppal G. Gowtham ◽  
Mohammad Azam Ansari ◽  
Mohammad N. Alomary ◽  
...  

Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles’ research and applications are discussed.


Zinc deficiency is one of the major malnutritional problems worldwide specifically in developing and developed countries. The zinc uptake takes place in human body in ionic form and metabolized naturally and converted into nano form. In the present study zinc oxide nanoparticles (ZnONPs) were synthesized by starch. The synthesized different ZnONPs were characterized by Fourier Transform Infra-Red spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X ray analysis (EDX). FTIR analysis revealed Zinc peak at 405.05 cmˉ1 .The average size of the synthesized ZnONPs was in the range from 200-300 nm with flower like shape. Furthermore, toxicity and level of nanoparticle accumulation were evaluated in young and adult guppies (Poecilia reticulata) using different concentration of ZnONPs. To explore the toxicological effect, the different concentration of nanoparticles administered in young and adult guppies. There was a dose dependent toxicological effects were noted in the guppies.


Sign in / Sign up

Export Citation Format

Share Document