scholarly journals Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review

Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 360
Author(s):  
Mohammad Main Uddin ◽  
Mohamed Cassim Mohamed Zakeel ◽  
Junaida Shezmin Zavahir ◽  
Faiz M. M. T. Marikar ◽  
Israt Jahan

Aquatic ecosystems are contaminated with heavy metals by natural and anthropogenic sources. Whilst some heavy metals are necessary for plants as micronutrients, others can be toxic to plants and humans even in trace concentrations. Among heavy metals, cadmium (Cd), arsenic (As), chromium (Cr), lead (Pb), and mercury (Hg) cause significant damage to aquatic ecosystems and can invariably affect human health. Rice, a staple diet of many nations, and other aquatic plants used as vegetables in many countries, can bioaccumulate heavy metals when they grow in contaminated aquatic environments. These metals can enter the human body through food chains, and the presence of heavy metals in food can lead to numerous human health consequences. Heavy metals in aquatic plants can affect plant physicochemical functions, growth, and crop yield. Various mitigation strategies are being continuously explored to avoid heavy metals entering aquatic ecosystems. Understanding the levels of heavy metals in rice and aquatic plants grown for food in contaminated aquatic environments is important. Further, it is imperative to adopt sustainable management approaches and mitigation mechanisms. Although narrowly focused reviews exist, this article provides novel information for improving our understanding about heavy metal accumulation in rice and aquatic plants, addressing the gaps in literature.

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Dunya A. Al-Abbawy ◽  
BASIM M. HUBAIN AL-THAHAIBAWI ◽  
ITHAR K.A. AL-MAYALY ◽  
KADHIM H. YOUNIS

Abstract. Al-Abbawy DAH, Al-Thahaibawi BMH, Al-Mayaly IKA, Younis KH. 2021. Assessment of some heavy metals in various aquatic plants of Al-Hawizeh Marsh, southern of Iraq. Biodiversitas 22: 338-345. In order to describe the degree of contamination of aquatic environments in Iraq, heavy metals analysis (Fe, Ni, Cr, Cd, Pb, and Zn) was conducted for six aquatic macrophytes from different locations of Al-Hawizeh Marsh in southern Iraq. The six species were Azolla filiculoides (floating plant), Ceratophyllum demersum, Potamogeton pectinatus, Najas marina (submerged plants), Phragmites australis, and Typha domingensis (emergent plants). The results indicate that cadmium, chromium, and iron concentrations in aquatic plants were above the World Health Organization (WHO). In contrast, zinc, copper, and lead were within the allowable limits. C. demersum and N. marina showed higher concentrations of heavy metal accumulation than the other aquatic plants. The concentration of heavy metals in plant tissues during the summer months was higher than in the different seasons. C. demersum and N. marina showed higher concentrations of heavy metal accumulation than the other aquatic plants. Heavy metal bioconcentration (BCF) was calculated to assess heavy metals bioaccumulation in the aquatic plants.


2021 ◽  
Vol 889 (1) ◽  
pp. 012062
Author(s):  
Manmeet Kaur ◽  
Akriti Sharma ◽  
Aditya

Abstract Pollutants in the environment remains to be a global issue and among the greatest challenges confronting mankind. Among the various kinds of pollutants, heavy metals have drawn a lot of attention owing to their toxicity. Heavy metals are recognized to be naturally existing, however they are introduced in considerable quantities in many environmental compartments due to anthropogenic activities. When added into the atmosphere eventually these find their way back to the ground, contaminating soils and water. These metals enter into the plant system through a variety of physiological mechanisms, affecting plant growth and development. The possible entry of these elements into the ecosystem has been attributed to the increased levels of heavy metals in the ecosystem through direct intake from polluted soils, vegetables grown on polluted soils, or drinking wastewater that has infiltrated through such soils. Heavy metal accumulation arises when vegetable crops are grown in an environment contaminated with heavy metal, further entering and magnifying in the food chain. Human health is jeopardised by the presence and consumption of potentially harmful heavy metals in biota and groundwater. Heavy metal exposure can cause a number of serious human health implications, including kidney disease, respiratory problems, neurological disorders, and cancer. These heavy metals have an impact not merely on plants and humans, but also on soil health, water sources, soil nutrient status, and other aquatic organisms. These are irreversibly introduced in the environment since they cannot be degraded and are typically present in trace amounts, yet even at low levels, many of them can be harmful. The increased levels of heavy metals in the environment are hence currently prompting increased concern and need improvised remedial measures.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Eka Wardhani ◽  
Lina Apriyanti Sulistiowati

ABSTRAKSungai Segah adalah salah satu sungai terbesar yang berada di Kabupaten Berau. Sungai Segah membentang dari hulu Kecamatan Segah dan bertemu dengan Sungai Kelay tepat di jantung kota Tanjung Redeb pusat pemerintahan Kabupaten Berau. Penelitian ini bertujuan untuk menilai tingkat kontaminasi sedimen oleh pencemaran logam berat Cr, Cu, Cd, Pb, dan Zn. Sedimen merupakan tempat akumulasi logam berat dalam ekosistem perairan. Sedimen merupakan tempat akumulasi logam berat dalam ekosistem perairan. Logam berat akan terlepas dan menjadi sumber pencemaran di perairan tersebut. Sedimen memegang peranan penting dalam pergerakan dan akumulasi logam berat yang berpotensi menimbulkan dampak toksisitas terhadap biota. Metode penelitian menggunakan contamination Factor, diharapkan dapat memberi gambaran nyata mengenai pencemaran lima logam berat yaitu Cr, Cu, Cd, Pb, dan Zn yang terjadi sehingga dapat memberikan masukan untuk pengelola sungai dalam mengambil langkah pengendalian pencemaran air yang tepat. Berdasarakan hasil penelitian dapat disimpulkan bahwa konsentrasi lima logam berat yaitu Cr, Cu, Cd, Pb, dan Zn yang terkandung di Sungai Segah masih memenuhi bakumutu berdasarkan ANZECC, 1995. Berdasarkan penilaian kualitas sedimen Sungai Segah dengan menggunakan metode Cf dinyatakan bahwa sedimen telah tercemar oleh logam berat terutama Cd dengan katagori tercemar sangat berat. Sumber logam berat Cd dan logam berat lainnya diprediksi berasal dari aktivitas pertambangan di DAS Segah. Diperlukan upaya pengendalian pencemaran dari sumbernya supaya pencemaran sedimen di sungai ini tidak menimbulkan dampak lebih lanjut.Kata Kunci: Berau, Contamination Factor, Segah, SedimenABSTRACTSegah River is one of the largest rivers located in Berau District. Segah River stretches from upstream of Segah District and meets Kelay River right in the heart of Tanjung Redeb district of Berau District Government. This study aims to assess the level of sediment contamination by heavy metal pollution Cr, Cu, Cd, Pb, and Zn. Sediments are places of heavy metal accumulation in aquatic ecosystems. Sediments are places of heavy metal accumulation in aquatic ecosystems. Heavy metal will be released and become a source of pollution in these waters. Sediments play an important role in the movement and accumulation of heavy metals that could potentially impact toxicity to biota. The research method using contamination Factor is expected to give a real picture of the contamination of five heavy metals that Cr, Cu, Cd, Pb, and Zn that occur so as to provide input for river managers in taking appropriate water pollution control measures. Based on the result of the research, it can be concluded that the concentration of five heavy metals of Cr, Cu, Cd, Pb, and Zn contained in Segah River still fulfill stream standard based on ANZECC, 1995. Based on the assessment of Segah River sediment quality using Cf method it is stated that sediment has been contaminated by heavy metal especially Cd with the heavy contaminated category. Sources of heavy metals Cd and other heavy metals are predicted to come from mining activities in the Segah River Basin. There is a need to control pollution from the source so that sediment contamination in the river will not cause a further impact.Keywords: Berau, Contamination Factor, Segah, Sedimen


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Elijah Abakpa Adegbe ◽  
Oluwaseyi Oluwabukola Babajide ◽  
Lois Riyo Maina ◽  
Shola Elijah Adeniji

Abstract Background Heavy metal accumulation in the ecosystem constitutes a potential toxic effect which is hazardous to human health. Increasing environmental pollution has necessitated the use of cattle egrets to evaluate the levels of heavy metal contamination, to establish their use in biomonitoring of heavy metals and to provide data for monitoring pollution in the environment. Results The present study assessed the utilization of Bubulcus ibis in monitoring pollution in five abattoirs, namely Agege, Bariga, Kara, Itire and Idi-Araba, all situated in Lagos State. The concentration of five (5) heavy metals, cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) was determined in the liver, muscle and feather of Bubulcus ibis using the atomic absorption spectrophotometer. The trend of metal accumulation was in the order: Zn > Cu > Pb > Cd > Ni for all the sampled tissues. The mean tissue concentrations of the metals were significantly different (p < 0.05) among the sites. The highest levels of metal concentration were reported in the liver in all the locations. Mean concentration of Cd in Kara (0.003 ± 0.00058) was significantly (p < 0.05) higher than those found at Agege (0.0013 ± 0.00058) and Idi-Araba (0.001 ± 0.001). A significant difference (p < 0.05) was also observed between the mean concentrations of Cu in Bariga (0.01 ± 0.001) and Idi-Araba (0.003 ± 0.001). Conclusion All the studied heavy metals were present in the liver, muscle and feathers of the cattle egrets. The contamination levels were ascertained from the study which indicated that cattle egrets are useful in biomonitoring studies and the generated data will serve as baseline data which could be compared with data from other locations for monitoring heavy metal pollution.


2019 ◽  
Vol 17 (3) ◽  
pp. 288-294
Author(s):  
Md Akhter Hossain Chowdhury ◽  
Tanzin Chowdhury ◽  
Md Arifur Rahman

Heavy metal accumulation in environmental compartments is a potential risk to the living system because of their uptake by plants and subsequent introduction into the food chain. A study was carried out to investigate the heavy metal contents in industrially contaminated soils collected from six different locations of Dhaka and Mymensingh districts and their effects on two important vegetables namely tomato and cabbage. Pot experiment was conducted using contaminated soils at the net house of Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh following completely randomized design (CRD) with three replicates. The higher level of heavy metal contents was found in the soil samples of Hajaribag and Dhaka Export Processing Zone (DEPZ). The highest Ni, Cd, Cr, Cu and Fe contents were 59.45, 18.79, 67.57, 40.81 and 1619.61 µg g−1 which were much above the recommended level except Cu contents. The highest yield of vegetables was obtained grown in Maskanda soil of Mymensingh district and the lowest from DEPZ soil of Dhaka. The highest Ni, Cr and Fe contents were 8.91, 7.22, 419.65 µg g−1, respectively in tomato fruits grown in the soil of Hajaribag whereas the highest Cu content (3.38 µg g−1) was obtained from Seedstore soil, Mymensingh and highest Cd content (2.88 µg g−1) was from Mitford ghat soil, Dhaka. In cabbage, the highest Ni (17.52 µg g−1) and Fe (411.25 µg g−1) contents were found in the soils of DEPZ whereas the highest Cr (9.17 µg g−1), Cd (3.52 µg g−1) and Cu (8.51 µg g−1) were obtained in the plants grown in the soils of Hajaribag, Mitford ghat and Maskanda, respectively. Concentrations of all the tested heavy metals except Cu in both vegetables were above the maximum allowable limit prescribed by the World Health Organization. Among the metals, the accumulation of Ni was found as higher amount (0.39 and 0.71 for tomato and cabbage, respectively) based on plant concentration factor or transfer factor. The results showed a positive correlation between concentration of the metals present in soils and in vegetables and the highest correlation was found with Cr in tomato and Fe in cabbage. However, both the soils and grown vegetables were consistently observed to pose a risk to human health. So, it can be recommended that government should take necessary action so that heavy metals used in the industries cannot come into the nearby agricultural field to ensure food safety as well as food security. J Bangladesh Agril Univ 17(3): 288–294, 2019


Author(s):  
Francesco Lombardi ◽  
Giulia Costa ◽  
Maria Chiara Di Lonardo ◽  
Alessio Lieto

This work evaluated and compared potential impacts related to the accumulation and/or release of heavy metals resulting from the application of different types of stabilized waste to soil. Namely, the following three types of flows were considered: waste produced by aerobic bio-stabilization of municipal solid waste at a Mechanical Biological Treatment (MBT) plant, and compost produced either from aerobic composting or from a combination of anaerobic and aerobic biodegradation processes. After a preliminary characterization of the materials (organic matter content, volatile solid, and heavy metals content), heavy metal accumulation in soil caused by possible long-term application of these organic materials was evaluated by implementing a discretized mass balance based on the total content of the heavy metals in each type of solid matrix investigated. In addition, results of percolation leaching tests performed on each type of material were presented and discussed. Results highlight that although the total content of heavy metals of the three types of materials differed considerably, with the MBT waste presenting the highest concentrations, the results of the leaching percolation tests were quite similar.


2017 ◽  
Vol 3 (01) ◽  
pp. 65-76
Author(s):  
Saima Kausar ◽  
Shahla Faizan ◽  
Irfana Haneef

Use of wastewater for irrigation is on the rise in India and other developing countries. Wastewater contains plant nutrients that favour crop growth but leave a burden of heavy metals which can enter the food chain and is a cause of great concern. This study was conducted to explore the possibility of using wastewater to grow four vegetables fenugreek (Trigonella foenum-graecum L.), spinach (Spinacia oleracea L.), radish (Raphanus sativus L.) and carrot (Daucus carotaL.). Two aspects namely (1) effect on plant growth and yield (2) accumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in leaves and roots of the plant have been presented in this paper. The physico-chemical analysis of the wastewater showed that it was rich in total suspended and dissolved solids with large amount of BOD and COD. The higher amount of Cl-, Ca++, Mg++ and K+ were also present in the effluent. The heavy metal (Cd, Cr, Cu, Ni, Pb and Zn) content in wastewater is comparatively more than groundwater (GW). The values of these heavy metals were slightly higher in the soil irrigated with wastewater. The effluent severely affects crop plants and soil properties when used for irrigation. The growth characteristics (plant length, plant fresh and dry weight, leaf number and leaf area) as well as yield characteristics (seed number, 1000 seed weight and seed yield) of all the plants, irrigated with 100% wastewater, were more than that with groundwater. The pattern of increase for the plants was fenugreek greater than radish greater than spinach greater than carrot. Though the wastewater contains low levels of the heavy metals, the soil and plant samples show higher values due to accumulation, but their level was under permissible limits in plants. The trend of metal accumulation in wastewater-irrigated soil is in the order: Pb greater than Ni greater than Zn greater than Cu greater than Cr greater than Cd. Of the four plants that are grown, the order of total heavy metal accumulation in roots is Carrot greater than Radish, while in leaves the order is Spinach greater than Fenugreek. The enrichment factor (EF) of the heavy metals in contaminated soil is in the sequence of Ni (3.1) greater than Pb (2.6) greater than Cd (2.35) greater than Zn (2.18) greater than Cu (1.66) greater than Cr (1.05), while in plants EF varies depending upon the species and plant part. Radish and carrot show a high transfer factor (TF greater than 1) for Cd signifying a high mobility of Cd from soil to plant whereas the TF values for Pb are very low as it is not bioavailable. Thus, it may be concluded that wastewater may be used profitably for the cultivation of these vegetables and could effectively supplement not only the nutrient requirement of the crop but may also act as the source of water..


2009 ◽  
Vol 6 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Abida Begum ◽  
M. Ramaiah ◽  
Harikrishna ◽  
Irfanulla Khan ◽  
K. Veena

Assessment of heavy metal content in litchens and soil samples from various localities of Hosur Road, Bangalore south was undertaken. Topsoil samples (0-10 cm) were taken at various locations, the metals analysed were Cr, Pb, Fe, Zn, Ni and Cu. The geoaccumulation index of these metals in the soils under study residential areas indicated that they are uncontaminated with Ni, Zn, and Fe and moderately contaminated with Cr and Pb. In Industrial areas and traffic junctions the concentration of Fe, Pb and Ni was maximum. Heavy metal accumulation in few prominent lichens of some localities was analysed. Cr and Pb were maximum inChrysothrix candelaris(L.) Laundon, at the gardens of Madiwala and Silk Board junction with 95.29 and 623.95 µg g–1dry weight respectively. Fe and Cu were maximum inBulbothrix isidiza(Nyl.). Hale andPyxine petricolaNyl at Central Prison campus and Kendriya Sadan campus with 22721 and 338.12 µg g–1dry weight respectively,Lecanora perplexaBrodo at Infosis and Wipro Campus, electronic city have 531.5 and 634 µg g–1dry weight of Zn. While Ni and Fe were maximum in Arthopyreniaceae at Shanti Niketan of MICO Limited with 1100 and 23200 µg g–1dry weight respectively.


2020 ◽  
Vol 63 (1) ◽  
pp. 22-29
Author(s):  
Jehan Bakht ◽  
Rafi Ullah ◽  
Mohammad Shafi

 The present study investigates the phyto-accumulation capacity of two cultivars of sunflower (Helianthus annuus L.) for heavy metals. Analysis of the data recorded ten weeks after sowing indicated that heavy metal application had significantly (p<0.05) affected all the parameters under study. Interaction of EDTA x cultivar and EDTA x cultivar x heavy metal had significantly (p<0.05) affected root fresh weight, root dry weight and heavy metal accumulation. EDTA application had significant (p<0.05) effect on heavy metal accumulation when data was noted ten weeks after sowing. The data also revealed that maximum plant height, number of leaves/plant, shoot fresh weight and dry weight, root fresh and dry weight was noted in control pots (0 mg/kg heavy metal). The suggested that maximum shoot fresh weight shoot dry weight, root fresh weight and root dry weight was noted in pots kept at control with San Sun-33 when applied with 5 mM EDTA. Similarly, maximum heavy metal accumulation was recorded in treatment sown of HiSun-33 applied with 5 mM EDTA and 50 mM chromium. Maximum root fresh weight was noted in control pots treated with 5 mM EDTA and planted with San Sun-33. Similarly, heavy metal accumulation was more in HiSun-33 treated with 50 mg/kg chromium and 5 mM EDTA. In terms of accumulation of heavy metals, HiSun-33 demonstrated better accumulation of the tested heavy metals then SanSun-33, anyhow the growth of SanSun-33 was better than HiSun-33 due to lesser accumulation of heavy metals.  


Sign in / Sign up

Export Citation Format

Share Document