scholarly journals Deoxynivalenol Induces Inflammatory Injury in IPEC-J2 Cells via NF-κB Signaling Pathway

Toxins ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 733 ◽  
Author(s):  
Xichun Wang ◽  
Yafei Zhang ◽  
Jie Zhao ◽  
Li Cao ◽  
Lei Zhu ◽  
...  

The aim of this study was to investigate the effects of deoxynivalenol (DON) exposure on the inflammatory injury nuclear factor kappa-B (NF-κB) pathway in intestinal epithelial cells (IPEC-J2 cells) of pig. The different concentrations of DON (0, 125, 250, 500, 1000, 2000 ng/mL) were added to the culture solution for treatment. The NF-κB pathway inhibitor pyrrolidine dithiocarbamate (PDTC) was used as a reference. The results showed that when the DON concentration increased, the cell density decreased and seemed damaged. With the increase of DON concentration in the culture medium, the action of diamine oxidase (DAO) in the culture supernatant also increased. The activities of IL-6, TNF-α, and NO in the cells were increased with the increasing DON concentration. The relative mRNA expression of IL-1β and IL-6 were increased in the cells. The mRNA relative expression of NF-κB p65, IKKα, and IKKβ were upregulated with the increasing of DON concentration, while the relative expression of IκB-α mRNA was downregulated. At the same time, the expression of NF-κB p65 protein increased gradually in the cytoplasm and nucleus with a higher concentration of DON. These results showed that DON could change the morphology of IPEC-J2 cells, destroy its submicroscopic structure, and enhance the permeability of cell membrane, as well as upregulate the transcription of some inflammatory factors and change the expression of NF-κB-related gene or protein in cells.

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hao Huang ◽  
Yanqin Fan ◽  
Zhao Gao ◽  
Wei Wang ◽  
Ning Shao ◽  
...  

Abstract Background Studies have indicated that changed expression of hypoxia-inducible factor-1α (HIF-1α) in epithelial cells from the kidney could affect the renal function in chronic kidney disease (CKD). As Angiotensin II (Ang II) is a critical active effector in the renin-angiotensin system (RAS) and was proved to be closely related to the inflammatory injury. Meanwhile, researchers found that Ang II could alter the expression of HIF-1α in the kidney. However, whether HIF-1α is involved in mediating Ang II-induced inflammatory injury in podocytes is not clear. Methods Ang II perfusion animal model were established to assess the potential role of HIF-1α in renal injury in vivo. Ang II stimulated podocytes to observe the corresponding between HIF-1α and inflammatory factors in vitro. Results The expression of inflammatory cytokines such as MCP-1 and TNF-α was increased in the glomeruli from rats treated with Ang II infusion compared with control rats. Increased HIF-1α expression in the glomeruli was also observed in Ang II-infused rats. In vitro, Ang II upregulated the expression of HIF-1α in podocytes. Furthermore, knockdown of HIF-1α by siRNA decreased the expression of MCP-1 and TNF-α. Moreover, HIF-1α siRNA significantly diminished the Ang II-induced overexpression of HIF-1α. Conclusion Collectively, our results suggest that HIF-1α participates in the inflammatory response process caused by Ang II and that downregulation of HIF-1α may be able to partially protect or reverse inflammatory injury in podocytes.


2021 ◽  
Author(s):  
Jiawei Xie ◽  
Li Chen ◽  
Yuling Luo ◽  
Jianling Li ◽  
Xianxue Wang ◽  
...  

Abstract In the brain, the NOD-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome is mostly expressed in microglia and is considered to be the primary cause of perioperative neurocognitive dysfunction (PND). Dexmedetomidine (Dex), a novel kind of clinical anesthetic with anti-inflammatory properties, has been shown to be effective in preventing PND in surgical patients. However, the mechanism of its anti-neuroinflammatory activity is still quite unclear. We examined the impact of Dex administration on Nlrp3 priming in activated BV-2 cells in this research. To investigate the mechanism by which Dex impacts Nlrp3 priming, we employed the inhibitors pyrrolidine dithiocarbamate (PDTC) and N-acetyl-L-cysteine (NAC) to block the NF-κB p65 and the reactive oxygen species (ROS)-Nlrp3-interleukin (IL)-1β signaling axis, respectively. The results showed that Dex substantially decreased the expression of Nlrp3 and p65 and significantly inhibited the levels of the inflammatory factors IL-1β and tumor necrosis factor (TNF)-α in BV-2 cells stimulated with lipopolysaccharide (LPS). Additionally, when the NF-κB pathway was inhibited by PDTC, Dex could aggravate the downregulation of Nlrp3 and IL-1β in BV-2 cells. What is more, Dex negatively regulated the expression of Nlrp3 and IL-1β in activated BV-2 cells when NAC was added. These results showed that Dex inhibited Nlrp3 priming in LPS-induced BV-2 cells, presumably via blocking the NF-κB pathway and the ROS-Nlrp3-IL-1β signaling axis.


2020 ◽  
Vol 26 (7) ◽  
pp. 627-634 ◽  
Author(s):  
Zhang Zhu ◽  
Li Xueying ◽  
Li Chunlin ◽  
Xiong Wen ◽  
Zeng Rongrong ◽  
...  

Berberine is an alkaloid extracted from medicinal plants such as Coptis chinensis and Phellodendron chinense. It possesses anti-inflammatory, anti-tumour and anti-oxidation properties, and regulates Glc and lipid metabolism. This study explored the mechanisms of the protective effects of berberine on barrier function and inflammatory damage in porcine intestinal epithelial cells (IPEC-J2) induced by LPS. We first evaluated the effects of berberine and LPS on cell viability. IPEC-J2 cells were treated with 5 μg/ml LPS for 1 h to establish an inflammatory model, and 75, 150 and 250 μg/ml berberine were used in further experiments. The expression of IL-1β, IL-6 and TNF-α was measured by RT-PCR. The key proteins of the NF-κB/MAPK signalling pathway (IκBα, p-IκBα, p65, p-p65, c-Jun N-terminal kinase (JNK), p-JNK, p38, p-p38, ERK1/2 and p-ERK1/2) were detected by Western blot. Upon exposure to LPS, IL-1β, IL-6 and TNF-α mRNA levels and p-IκBα p-p65 protein levels were significantly enhanced. Pre-treatment with berberine reduced the expression of inflammatory factors and was positively correlated with its concentration, and dose dependently inhibited the expression of IκBα, p-IκBα, p-p65, p-p38 and JNK. These results demonstrated that pre-treating intestinal epithelial cells with berberine was useful in preventing and treating diarrhoea induced by Escherichia coli in weaned pigs.


2020 ◽  
Author(s):  
Yizhe Cui ◽  
Xinyue Qiao ◽  
Qiuju Wang ◽  
Rui Wu

Abstract Background: The nuclear factor-ĸB (NF-ĸB) transcriptional system is a major effector pathway involved in inflammatory responses. Previous studies found that a Gardenia decoction (GD) inhibited the expression of NF-κB in a lipopolysaccharide (LPS)-stimulated mouse intestinal injury model. Herein, we hypothesized that geniposide (GE), a component of Gardenia jasminoides Ellis, also exerts anti-inflammatory effects and inhibits NF-ĸB activity in LPS-induced intestinal epithelial cells (IEC-6). IEC-6 cells were stimulated with LPS, following which the effects of GE on NF-ĸB signaling in the IEC-6 cells were examined by western blotting to detect IĸB phosphorylation/degradation. The expression of NF-κB was determined by immunofluorescence assay (IFA). Enzyme-linked immunosorbent assay (ELISA) was used to detect the inhibitory effect of GE on the release of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) activated by LPS in IEC-6 cells. In addition, the migration ability of IEC-6 cells was observed by the scratch method. Results: These results showed that GE dose-dependently downregulated levels of the proinflammatory cytokines TNF-α, IL-6 and IL-1β that had been upregulated by LPS and suppressed the phosphorylation of IĸB and NF-ĸB induced by LPS. Our findings indicated that GE could reduce LPS-induced NF-ĸB signaling and proinflammatory expression in IEC-6 cells and significantly enhance the migration of IEC-6 cells. Moreover, GE inhibited the expression of NF-κB, nuclear transfer, and transcriptional activity in IEC-6 cells. Conclusion: GE could block the synthesis of inflammatory factors of IEC-6 cells by inhibiting activation of the IĸB/NF-κB signaling pathway induced by LPS.


2017 ◽  
Vol 43 (5) ◽  
pp. 2010-2021 ◽  
Author(s):  
Da-Peng Wu ◽  
Jun-Lei Zhang ◽  
Jing-Yu Wang ◽  
Ming-Xing Cui ◽  
Jin-Ling Jia ◽  
...  

Background/Aims: Osteoarthritis (OA) is a common inflammatory joint disease. miRNAs are associated with OA and functionally implicated in the pathogenesis of the disease. In the present study, we investigated the role of miR-1246 in the lipopolysaccharide (LPS)-induced inflammatory injury of ATDC5 cells. Methods: ATDC5 cells were cultured and treated with LPS in a series of concentration (0, 1, 5, and 10 µg/ml) for 5 h. The cells were transfected with miR-1246-mimic, inhibitor, si-HNF4γ or negative control, then were assessed for cell viability using CCK8 assay, apoptosis by flow-cytometry and expressions of miR-1246 and pro-inflammatory cytokines by qRT-PCR and western blot analysis. Results: Cell viability was significantly reduced and cell apoptosis was added in ATDC5 cells injured with LPS at the dosage of 5 and 10 µg/ml. Relative mRNA expressions of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α) were significantly increased. miR-1246 was up-regulated in ATDC5 cells treated with LPS. Moreover, miR-1246 overexpression aggravated LPS-induced decrease in cell viability, increase in apoptosis and overproduction of pro-inflammatory factors. mRNA and protein expressions of HNF4γ were significantly suppressed in cells transfected with miR-124-mimic. Further, miR-1246 knockdown alleviated LPS-induced inflammatory injury by up-regulating the expression of HNF4γ and activation of PI3K/AKT and JAK/STAT pathways. Conclusions: Suppression of miR-1246 alleviated LPS-induced inflammatory injury in chondrogenic ADTC5 cells by up-regulation of HNF4γ and activation of PI3K/AKT and JAK/STAT pathways. The findings of this study will provide a novel viewpoint regarding miR-1246 target for clinical.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qiangqiang Zhao ◽  
Duanfeng Jiang ◽  
Xiaoying Sun ◽  
Qiuyu Mo ◽  
Shaobin Chen ◽  
...  

Abstract Background Non-Hodgkin’s lymphoma (NHL) is a malignant disease of lymphoid tissue. At present, chemotherapy is still the main method for the treatment of NHL. R-CHOP can significantly improve the survival rate of patients. Unfortunately, DOX is the main cytotoxic drug in R-CHOP and it can lead to adverse reactions. Therefore, it is particularly important to uncover new treatment options for NHL. Results In this study, a novel anti-tumor nanoparticle complex Nm@MSNs-DOX/SM was designed and constructed in this study. Mesoporous silica nanoparticles (MSNs) loaded with Doxorubicin (DOX) and anti-inflammatory drugs Shanzhiside methylester (SM) were used as the core of nanoparticles. Neutrophil membrane (Nm) can be coated with multiple nanonuclei as a shell. DOX combined with SM can enhance the anti-tumor effect, and induce apoptosis of lymphoma cells and inhibit the expression of inflammatory factors related to tumorigenesis depending on the regulation of Bcl-2 family-mediated mitochondrial pathways, such as TNF-α and IL-1β. Consequently, the tumor microenvironment (TME) was reshaped, and the anti-tumor effect of DOX was amplified. Besides, Nm has good biocompatibility and can enhance the EPR effect of Nm@MSNs-DOX/SM and increase the effect of active targeting tumors. Conclusions This suggests that the Nm-modified drug delivery system Nm@MSNs-DOX/SM is a promising targeted chemotherapy and anti-inflammatory therapy nanocomplex, and may be employed as a specific and efficient anti-Lymphoma therapy.


2020 ◽  
Vol 21 (22) ◽  
pp. 8826
Author(s):  
Elena Guillén-Gómez ◽  
Irene Silva ◽  
Núria Serra ◽  
Francisco Caballero ◽  
Jesús Leal ◽  
...  

Pretransplant graft inflammation could be involved in the worse prognosis of deceased donor (DD) kidney transplants. A2A adenosine receptor (A2AR) can stimulate anti-inflammatory M2 macrophages, leading to fibrosis if injury and inflammation persist. Pre-implantation biopsies of kidney donors (47 DD and 21 living donors (LD)) were used to analyze expression levels and activated intracellular pathways related to inflammatory and pro-fibrotic processes. A2AR expression and PKA pathway were enhanced in DD kidneys. A2AR gene expression correlated with TGF-β1 and other profibrotic markers, as well as CD163, C/EBPβ, and Col1A1, which are highly expressed in DD kidneys. TNF-α mRNA levels correlated with profibrotic and anti-inflammatory factors such as TGF-β1 and A2AR. Experiments with THP-1 cells point to the involvement of the TNF-α/NF-κB pathway in the up-regulation of A2AR, which induces the M2 phenotype increasing CD163 and TGF-β1 expression. In DD kidneys, the TNF-α/NF-κB pathway could be involved in the increase of A2AR expression, which would activate the PKA–CREB axis, inducing the macrophage M2 phenotype, TGF-β1 production, and ultimately, fibrosis. Thus, in inflamed DD kidneys, an increase in A2AR expression is associated with the onset of fibrosis, which may contribute to graft dysfunction and prognostic differences between DD and LD transplants.


Author(s):  
Ai-Lin Bian ◽  
Hui-Ying Hu ◽  
Yu-Dong Rong ◽  
Jian Wang ◽  
Jun-Xiong Wang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document