scholarly journals Cysteine-Rich Secretory Proteins (CRISPs) from Venomous Snakes: An Overview of the Functional Diversity in a Large and Underappreciated Superfamily

Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 175 ◽  
Author(s):  
Takashi Tadokoro ◽  
Cassandra M. Modahl ◽  
Katsumi Maenaka ◽  
Narumi Aoki-Shioi

The CAP protein superfamily (Cysteine-rich secretory proteins (CRISPs), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) proteins) is widely distributed, but for toxinologists, snake venom CRISPs are the most familiar members. Although CRISPs are found in the majority of venoms, very few of these proteins have been functionally characterized, but those that have been exhibit diverse activities. Snake venom CRISPs (svCRISPs) inhibit ion channels and the growth of new blood vessels (angiogenesis). They also increase vascular permeability and promote inflammatory responses (leukocyte and neutrophil infiltration). Interestingly, CRISPs in lamprey buccal gland secretions also manifest some of these activities, suggesting an evolutionarily conserved function. As we strive to better understand the functions that CRISPs serve in venoms, it is worth considering the broad range of CRISP physiological activities throughout the animal kingdom. In this review, we summarize those activities, known crystal structures and sequence alignments, and we discuss predicted functional sites. CRISPs may not be lethal or major components of venoms, but given their almost ubiquitous occurrence in venoms and the accelerated evolution of svCRISP genes, these venom proteins are likely to have functions worth investigating.

Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 95 ◽  
Author(s):  
Choo Tan ◽  
Kae Tan ◽  
Tzu Ng ◽  
Evan Quah ◽  
Ahmad Ismail ◽  
...  

Trimeresurus nebularis is a montane pit viper that causes bites and envenomation to various communities in the central highland region of Malaysia, in particular Cameron’s Highlands. To unravel the venom composition of this species, the venom proteins were digested by trypsin and subjected to nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) for proteomic profiling. Snake venom metalloproteinases (SVMP) dominated the venom proteome by 48.42% of total venom proteins, with a characteristic distribution of P-III: P-II classes in a ratio of 2:1, while P-I class was undetected. Snaclecs constituted the second most venomous protein family (19.43%), followed by snake venom serine proteases (SVSP, 14.27%), phospholipases A2 (5.40%), disintegrins (5.26%) and minor proteins including cysteine-rich secretory proteins, L-amino acid oxidases, phosphodiesterases, 5′-nucleotidases. The venomic profile correlates with local (painful progressive edema) and systemic (hemorrhage, coagulopathy, thrombocytopenia) manifestation of T. nebularis envenoming. As specific antivenom is unavailable for T. nebularis, the hetero-specific Thai Green Pit viper Monovalent Antivenom (GPVAV) was examined for immunological cross-reactivity. GPVAV exhibited good immunoreactivity to T. nebularis venom and the antivenom effectively cross-neutralized the hemotoxic and lethal effects of T. nebularis (lethality neutralizing potency = 1.6 mg venom per mL antivenom). The findings supported GPVAV use in treating T. nebularis envenoming.


2021 ◽  
Vol 12 ◽  
Author(s):  
Praneetha Palasuberniam ◽  
Yi Wei Chan ◽  
Kae Yi Tan ◽  
Choo Hock Tan

The Samar Cobra, Naja samarensis, is endemic to the southern Philippines and is a WHO-listed Category 1 venomous snake species of medical importance. Envenomation caused by N. samarensis results in neurotoxicity, while there is no species-specific antivenom available for its treatment. The composition and neutralization of N. samarensis venom remain largely unknown to date. This study thus aimed to investigate the venom proteome of N. samarensis for a comprehensive profiling of the venom composition, and to examine the immunorecognition as well as neutralization of its toxins by a hetero-specific antivenom. Applying C18 reverse-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (LC-MS/MS), three-finger toxins (3FTx) were shown to dominate the venom proteome by 90.48% of total venom proteins. Other proteins in the venom comprised snake venom metalloproteinases, phospholipases A2, cysteine-rich secretory proteins, venom nerve growth factors, L-amino acid oxidases and vespryn, which were present at much lower abundances. Among all, short-chain alpha-neurotoxins (SαNTX) were the most highly expressed toxin within 3FTx family, constituting 65.87% of the total venom proteins. The SαNTX is the sole neurotoxic component of the venom and has an intravenous median lethal dose (LD50) of 0.18 μg/g in mice. The high abundance and low LD50 support the potent lethal activity of N. samarensis venom. The hetero-specific antivenom, Philippine Cobra Antivenom (PCAV, raised against Naja philippinensis) were immunoreactive toward the venom and its protein fractions, including the principal SαNTX. In efficacy study, PCAV was able to cross-neutralize the lethality of SαNTX albeit the effect was weak with a low potency of 0.20 mg/ml (defined as the amount of toxin completely neutralized per milliliter of the antivenom). With a volume of 5 ml, each vial of PCAV may cross-neutralize approximately 1 mg of the toxin in vivo. The findings support the potential para-specific use of PCAV in treating envenomation caused by N. samarensis while underscoring the need to improve the potency of its neutralization activity, especially against the highly lethal alpha-neurotoxins.


2020 ◽  
Vol 17 (3) ◽  
pp. 241-254
Author(s):  
Yaqiong Zhang ◽  
Zhiping Jia ◽  
Yunyang Liu ◽  
Xinwen Zhou ◽  
Yi Kong

Background: Deinagkistrodon acutus (D. acutus) and Bungarus multicinctus (B. multicinctus) as traditional medicines have been used for hundreds of years in China. The venoms of these two species have strong toxicity on the victims. Objective: The objective of this study is to reveal the profile of venom proteins and peptides of D. acutus and B. multicinctus. Method: Ultrafiltration, SDS-PAGE coupled with in-gel tryptic digestion and Liquid Chromatography- Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-MS/MS) were used to characterize proteins and peptides of venoms of D. acutus and B. multicinctus. Results: In the D. acutus venom, 67 proteins (16 protein families) were identified, and snake venom metalloproteinases (SVMPs, 38.0%) and snake venom C-type lectins (snaclecs, 36.7%) were dominated proteins. In the B. multicinctus venom, 47 proteins (15 protein families) were identified, and three-finger toxins (3FTxs, 36.3%) and Kunitz-type Serine Protease Inhibitors (KSPIs, 32.8%) were major components. In addition, both venoms contained small amounts of other proteins, such as Snake Venom Serine Proteinases (SVSPs), Phospholipases A2 (PLA2s), Cysteine-Rich Secreted Proteins (CRISPs), 5'nucleotidases (5'NUCs), Phospholipases B (PLBs), Phosphodiesterases (PDEs), Phospholipase A2 Inhibitors (PLIs), Dipeptidyl Peptidases IV (DPP IVs), L-amino Acid Oxidases (LAAOs) and Angiotensin-Converting Enzymes (ACEs). Each venom also had its unique proteins, Nerve Growth Factors (NGFs) and Hyaluronidases (HYs) in D. acutus, and Cobra Venom Factors (CVFs) in B. multicinctus. In the peptidomics, 1543 and 250 peptides were identified in the venoms of D. acutus and B. multicinctus, respectively. Some peptides showed high similarity with neuropeptides, ACE inhibitory peptides, Bradykinin- Potentiating Peptides (BPPs), LAAOs and movement related peptides. Conclusion: Characterization of venom proteins and peptides of D. acutus and B. multicinctus will be helpful for the treatment of envenomation and drug discovery.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 290
Author(s):  
Caterina Peggion ◽  
Fiorella Tonello

Snake venom phospholipases A2 (PLA2s) have sequences and structures very similar to those of mammalian group I and II secretory PLA2s, but they possess many toxic properties, ranging from the inhibition of coagulation to the blockage of nerve transmission, and the induction of muscle necrosis. The biological properties of these proteins are not only due to their enzymatic activity, but also to protein–protein interactions which are still unidentified. Here, we compare sequence alignments of snake venom and mammalian PLA2s, grouped according to their structure and biological activity, looking for differences that can justify their different behavior. This bioinformatics analysis has evidenced three distinct regions, two central and one C-terminal, having amino acid compositions that distinguish the different categories of PLA2s. In these regions, we identified short linear motifs (SLiMs), peptide modules involved in protein–protein interactions, conserved in mammalian and not in snake venom PLA2s, or vice versa. The different content in the SLiMs of snake venom with respect to mammalian PLA2s may result in the formation of protein membrane complexes having a toxic activity, or in the formation of complexes whose activity cannot be blocked due to the lack of switches in the toxic PLA2s, as the motif recognized by the prolyl isomerase Pin1.


Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 359 ◽  
Author(s):  
Maria Romero-Gutiérrez ◽  
Carlos Santibáñez-López ◽  
Juana Jiménez-Vargas ◽  
Cesar Batista ◽  
Ernesto Ortiz ◽  
...  

To understand the diversity of scorpion venom, RNA from venomous glands from a sawfinger scorpion, Serradigitus gertschi, of the family Vaejovidae, was extracted and used for transcriptomic analysis. A total of 84,835 transcripts were assembled after Illumina sequencing. From those, 119 transcripts were annotated and found to putatively code for peptides or proteins that share sequence similarities with the previously reported venom components of other species. In accordance with sequence similarity, the transcripts were classified as potentially coding for 37 ion channel toxins; 17 host defense peptides; 28 enzymes, including phospholipases, hyaluronidases, metalloproteases, and serine proteases; nine protease inhibitor-like peptides; 10 peptides of the cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein superfamily; seven La1-like peptides; and 11 sequences classified as “other venom components”. A mass fingerprint performed by mass spectrometry identified 204 components with molecular masses varying from 444.26 Da to 12,432.80 Da, plus several higher molecular weight proteins whose precise masses were not determined. The LC-MS/MS analysis of a tryptic digestion of the soluble venom resulted in the de novo determination of 16,840 peptide sequences, 24 of which matched sequences predicted from the translated transcriptome. The database presented here increases our general knowledge of the biodiversity of venom components from neglected non-buthid scorpions.


2014 ◽  
Vol 11 (1) ◽  
pp. 4-14 ◽  
Author(s):  
Ramar Samy ◽  
Jayapal Manikandan ◽  
Gautam Sethi ◽  
Octavio Franco ◽  
Josiah C. Okonkwo ◽  
...  

2010 ◽  
Vol 9 (4) ◽  
pp. 1882-1893 ◽  
Author(s):  
G. OmPraba ◽  
Alex Chapeaurouge ◽  
Robin Doley ◽  
K. Rama Devi ◽  
P. Padmanaban ◽  
...  

2017 ◽  
Vol 65 (4) ◽  
pp. 241-249 ◽  
Author(s):  
Song Chen ◽  
Ying He ◽  
Ziwei Hu ◽  
Siyu Lu ◽  
Xiaohan Yin ◽  
...  

Heparanase, a heparan sulfate (HS)–specific endoglycosidase, plays an important role in inflammation and mediates acute pulmonary and renal injuries during sepsis. To explore its role in septic intestinal injury, a non-anticoagulant heparanase inhibitor, N-desulfated/re- N-acetylated heparin (NAH), was administrated to a mouse sepsis model induced by cecal ligation and puncture (CLP). Immunohistochemical staining revealed massive shedding of HS from the intestinal mucosal surfaces after CLP, and effective inhibition of heparanase by NAH was confirmed by markedly reduced HS shedding. Following CLP, intestinal expression of heparanase was increased, whereas pretreatment with NAH reduced the sepsis-induced upregulation of heparanase expression. Meanwhile, CLP led to shedding of syndecan-1 and upregulated expression of proteases such as matrix metalloprotease-9 and urokinase-type plasminogen activator in the intestine, whereas NAH markedly suppressed syndecan-1 shedding and protease upregulation following CLP. In addition, pretreatment with NAH attenuated intestinal injury, inhibited neutrophil infiltration and suppressed the production of inflammatory cytokines (tumor necrosis factor–α, interleukin-1β, and interleukin-6) in the intestine during sepsis, and it also significantly reduced the elevation of inflammatory cytokines in the serum 24 hr after CLP. Our findings demonstrate that the activation of intestinal heparanase contributes to intestinal injury during early sepsis by facilitating the destruction of mucosal epithelial glycocalyx and promoting inflammatory responses.


Acta Naturae ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 4-14
Author(s):  
Alexey S. Averin ◽  
Yuri N. Utkin

Snake venoms, as complex mixtures of peptides and proteins, affect various vital systems of the organism. One of the main targets of the toxic components from snake venoms is the cardiovascular system. Venom proteins and peptides can act in different ways, exhibiting either cardiotoxic or cardioprotective effects. The principal classes of these compounds are cobra cardiotoxins, phospholipases A2, and natriuretic, as well as bradykinin-potentiating peptides. There is another group of proteins capable of enhancing angiogenesis, which include, e.g., vascular endothelial growth factors possessing hypotensive and cardioprotective activities. Venom proteins and peptides exhibiting cardiotropic and vasoactive effects are promising candidates for the design of new drugs capable of preventing or constricting the development of pathological processes in cardiovascular diseases, which are currently the leading cause of death worldwide. For example, a bradykinin-potentiating peptide from Bothrops jararaca snake venom was the first snake venom compound used to create the widely used antihypertensive drugs captopril and enalapril. In this paper, we review the current state of research on snake venom components affecting the cardiovascular system and analyse the mechanisms of physiological action of these toxins and the prospects for their medical application.


2018 ◽  
Author(s):  
Yanhui Hu ◽  
Richelle Sopko ◽  
Verena Chung ◽  
Romain A. Studer ◽  
Sean D. Landry ◽  
...  

AbstractPost-translational modification (PTM) serves as a regulatory mechanism for protein function, influencing stability, protein interactions, activity and localization, and is critical in many signaling pathways. The best characterized PTM is phosphorylation, whereby a phosphate is added to an acceptor residue, commonly serine, threonine and tyrosine. As proteins are often phosphorylated at multiple sites, identifying those sites that are important for function is a challenging problem. Considering that many phosphorylation sites may be non-functional, prioritizing evolutionarily conserved phosphosites provides a general strategy to identify the putative functional sites with regards to regulation and function. To facilitate the identification of conserved phosphosites, we generated a large-scale phosphoproteomics dataset from Drosophila embryos collected from six closely-related species. We built iProteinDB (https://www.flyrnai.org/tools/iproteindb/), a resource integrating these data with other high-throughput PTM datasets, including vertebrates, and manually curated information for Drosophila. At iProteinDB, scientists can view the PTM landscape for any Drosophila protein and identify predicted functional phosphosites based on a comparative analysis of data from closely-related Drosophila species. Further, iProteinDB enables comparison of PTM data from Drosophila to that of orthologous proteins from other model organisms, including human, mouse, rat, Xenopus laevis, Danio rerio, and Caenorhabditis elegans.


Sign in / Sign up

Export Citation Format

Share Document