scholarly journals Microbiological and Toxicological Hazards in Sewage Treatment Plant Bioaerosol and Dust

Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 691
Author(s):  
Justyna Szulc ◽  
Małgorzata Okrasa ◽  
Katarzyna Majchrzycka ◽  
Michael Sulyok ◽  
Adriana Nowak ◽  
...  

Despite the awareness that work in the sewage treatment plant is associated with biological hazards, they have not been fully recognised so far. The research aims to comprehensively evaluate microbiological and toxicological hazards in the air and settled dust in workstations in a sewage treatment plant. The number of microorganisms in the air and settled dust was determined using the culture method and the diversity was evaluated using high-throughput sequencing. Endotoxin concentration was assessed with GC-MS (gas chromatography-mass spectrometry) while secondary metabolites with LC-MS/MS (liquid chromatography coupled to tandem mass spectrometry). Moreover, cytotoxicity of settled dust against a human lung epithelial lung cell line was determined with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and UHPLC-Q-ToF-UHRMS (ultra-high-performance liquid chromatography-quadrupole time-of-flight ultrahigh-resolution mass spectrometry) analysis was performed to determine the source of cytotoxicity. The total dust concentration in the sewage treatment plant was low and ranged from 0.030 mg m−3 to 0.044 mg m−3. The highest microbiological contamination was observed in sludge thickening building and screenings storage. Three secondary metabolites were detected in the air and sixteen in the settled dust. They were dominated by compounds typical of lichen and plants and Aspergillus, Penicillium and Fusarium genera mould. The settled dust from the sludge thickening building revealed high cytotoxicity to human lung epithelial cells A-549 (IC50 = 6.98 after 72 h). This effect can be attributed to a biocidal compound—didecyldimethylammonium chloride (DDAC-C10) and seven toxic compounds: 4-hydroxynonenal, carbofuran, cerulenin, diethylphosphate, fenpropimorph, naphthalene and onchidal. The presence of DDAC-C10 and other biocidal substances in the sewage treatment plant environment may bring negative results for biological sewage treatment and the natural environment in the future and contribute to microorganisms’ increasing antibiotics resistance. Therefore, the concentration of antibiotics, pesticides and disinfectants in sewage treatment plant workstations should be monitored.

Author(s):  
Mohammad H. Semreen ◽  
Abdallah Shanableh ◽  
Lucy Semerjian ◽  
Hasan Alniss ◽  
Muath Mousa ◽  
...  

The present work describes the optimization and validation of a highly selective and sensitive analytical method using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE LC-MS/MS) for the determination of some frequently prescribed pharmaceuticals in urban wastewater received and treated by Sharjah sewage treatment plant (STP). The extraction efficiency of different SPE cartridges was tested and the simultaneous extraction of pharmaceuticals was successfully accomplished using hydrophilic-lipophilic-balanced reversed phase Waters® Oasis HLB cartridge (200 mg/ 6 mL) at pH 3. The analytes were separated on an Aquity BEH C18 column (1.7 µm, 2.1 mm x 150 mm) using gradient elution and the mass spectrometric analysis were performed in multiple reactions monitoring (MRM) selecting two precursor ions to produce ion transition for each pharmaceutical using positive electrospray ionization (+ESI) mode. The correlation coefficient values in the linear calibration plot for each target compound exceeded 0.99 and the recovery percentages of the investigated pharmaceuticals were more than 84%. Limit of detection (LOD) varied between 0.1-1.5 ng/L and limit of quantification (LOQ) was 0.3-5 ng/L for all analytes. The precision of the method was calculated as the relative standard deviation (RSD%) of replicate measurements and was found to be in the ranges of 2.2% to 7.7% and 2.2% to 8.6% for inter and intra-day analysis, respectively. All of the obtained validation parameters satisfied the requirements and guidelines of analytical method validation.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 633 ◽  
Author(s):  
Mohammad Semreen ◽  
Abdallah Shanableh ◽  
Lucy Semerjian ◽  
Hasan Alniss ◽  
Mouath Mousa ◽  
...  

The present work describes the optimization and validation of a highly selective and sensitive analytical method using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE LC-MS/MS) for the determination of some frequently prescribed pharmaceuticals in urban wastewater received and treated by Sharjah sewage treatment plant (STP). The extraction efficiency of different SPE cartridges was tested and the simultaneous extraction of pharmaceuticals was successfully accomplished using hydrophilic-lipophilic-balanced reversed phase Waters® Oasis HLB cartridge (200 mg/ 6 mL) at pH 3. The analytes were separated on an Aquity BEH C18 column (1.7 µm, 2.1 mm × 150 mm) using gradient elution and mass spectrometric analysis were performed in multiple reactions monitoring (MRM) selecting two precursor ions to produce ion transition for each pharmaceutical using positive electrospray ionization (+ESI) mode. The correlation coefficient values in the linear calibration plot for each target compound exceeded 0.99 and the recovery percentages of the investigated pharmaceuticals were more than 84%. Limit of detection (LOD) varied between 0.1–1.5 ng/L and limit of quantification (LOQ) was 0.3–5 ng/L for all analytes. The precision of the method was calculated as the relative standard deviation (RSD%) of replicate measurements and was found to be in the ranges of 2.2% to 7.7% and 2.2% to 8.6% for inter and intra-day analysis, respectively. All of the obtained validation parameters satisfied the requirements and guidelines of analytical method validation.


2005 ◽  
Vol 51 (6-7) ◽  
pp. 447-453 ◽  
Author(s):  
S. Terzic ◽  
M. Matosic ◽  
M. Ahel ◽  
I. Mijatovic

Behaviour of anionic surfactants of linear alkylbenzene sulphonates (LAS) type and non-ionic surfactants of nonylphenol polyethoxylate (NPnEO) type was studied in the conventional mechanical/biological sewage treatment plant (STP) as well as using a membrane biological reactor (MBR). LAS and NPnEO were determined using high performance liquid chromatography (HPLC) equipped with spectrofluorimetric detection. Liquid chromatography/tandem mass spectrometry (LC/MS/MS) was used for identification and quantification of stable metabolites, including nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO) and nonylphenoxy carboxylic acids (NPnEC). The study showed that aromatic surfactants belong to the most prominent constituents in the examined municipal wastewaters with typical LAS and NPnEO concentrations of 2–10 mg/L and 0.1–0.5 mg/L, respectively. The removal of aromatic surfactants in conventional STP showed well-known features reported in the literature, including an efficient microbial transformation of the parent molecules and formation of stable metabolic products. The elimination efficiency of aromatic surfactants using the MBR unit was higher than that in the conventional STP, while the composition of recalcitrant nonylphenolic residues in the effluent seems to be ecotoxicologically more favourable due to the lower contributions of the lipophilic metabolites.


Sign in / Sign up

Export Citation Format

Share Document