scholarly journals Isolation and Insecticidal Activity of Essential Oil from Artemisia lavandulaefolia DC. against Plutella xylostella

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 842
Author(s):  
Xing Huang ◽  
Yulin Huang ◽  
Chunyue Yang ◽  
Tiantian Liu ◽  
Xing Liu ◽  
...  

Many plants show significant biological activity against pests due to their unique chemical constituents. It is important to identify effective constituents for their development and utilization as botanical pesticides. Our previous study showed that Artemisia lavandulaefolia essential oil had biological activity against Plutella xylostella. Here, we isolated and identified the constituents of essential oil from A. lavandulaefolia by silica gel column chromatography. The main constituents identified were eucalyptol and caryophyllene oxide, and they were confirmed by gas chromatography–mass spectrometry (GC–MS). Eucalyptol and caryophyllene oxide showed strong contact toxicity against P. xylostella larvae after 24 h of application (Median lethal dose, LD50 = 76.97 μL/mL and 20.71 mg/mL. Furthermore, the two active constituents against P. xylostella adults showed significant fumigant activity (Mmedian lethal concentration, LC50 = 3.25 μL/L and 1.06 mg/L, respectively. Finally, we measured the detoxification enzymes and acetylcholinesterase of the larvae treated with active constituents. The eucalyptol-treated larvae displayed enhanced carboxylesterase (CarE) and glutathione-S-transferase (GST) activities in an in vivo experiment, but it was lower for acetylcholinesterase (AchE) activity. The activities of the CarE and GST significantly decreased when exposed to caryophyllene oxide. In general, the two active constituents, eucalyptol and caryophyllene oxide, showed high insecticidal activity, which demonstrates their potential to be used as natural insecticides.

2014 ◽  
Vol 79 (10) ◽  
pp. 1213-1222 ◽  
Author(s):  
Hai Chen ◽  
Kai Yang ◽  
Chun You ◽  
Shu Du ◽  
Qian Cai ◽  
...  

The essential oil obtained from Citrus wilsonii Tanaka leaves with hydrodistillation was investigated by GC and GC-MS. The main components of the essential oil were identified to be citronellol (16.94%), nerol acetate (10.35%), ?-terpinen (9.85%), citronellal (9.36%) and ?-pinene (6.72%). Among them, the four active constituents, predicted with a bioactivity-test, were isolated and identified as citronellol, ?-terpinene, nerol (neryl) acetate and ?-pinene. It was found that the essential oil of C. wilsonii leaves and isolated compounds possessed fumigant and contact toxicity against Tribolium castaneum adults. The essential oil and ?-terpinen showed strong fumigant toxicity against T. castaneum (LC50 = 8.18 and 4.09 mg L-1). Repellency of the crude oil and active compounds was also determined. Citronellol, neryl acetate and ?-pinene were strongly repellent (100%, 86% and 92%, respectively, at 78.63 nL cm-2, after 2 h treatment) against T. castaneum. The essential oil and citronellol exhibited the same level of repellency compared with the positive control, DEET. The results indicate that the essential oil of C. wilsonii leaves and its active compounds had the potential to be developed as natural fumigants, insecticides and repellents for control of T. castaneum.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2304
Author(s):  
Junyu Liang ◽  
Yazhou Shao ◽  
Haoshu Wu ◽  
Yue An ◽  
Junlong Wang ◽  
...  

Storage pests pose a great threat to global food security. Here, we found that the essential oil (EO) extracted from E. densa possesses obvious effects against the insects that threaten stored-products. In this work, we investigated the chemical constituents of the essential oil extracted from Elsholtzia densa, and their insecticidal (contact and fumigant) toxicity against Tribolium castaneum and Lasioderma serricorne. A total of 45 compounds were identified by GC-MS, accounting for 98.74% of the total EO. Meanwhile, 11 compounds were isolated from the EO, including limonene, β-caryophyllene, ρ-cymene, trans-phytol, α-terpineol, linalool, acetophenone, 1,8-cineole, ρ-cymen-7-ol, 1-O-cerotoylgly-cerol, and palmitic acid. Furthermore, acetophenone, ρ-cymen-7-ol, and 1-O-cerotoylgly-cerol were isolated for the first time from Elsholtzia spp. The results of the bioassays indicated that the EO had the property of insecticidal toxicity against T. castaneum and L. serricorne. All of the compounds showed different levels of insecticidal toxicity against the two species of insects. Among them, 2-ethyl-1H-imidazole had no insecticidal toxicity against T. castaneum, but possessed fumigant and obvious contact toxicity against L. serricorne. ρ-Cymen-7-ol had beneficial insecticidal toxicity against the two species of insects, and fumigant toxicity against L. serricorne. ρ-Cymen-7-ol (LD50 = 13.30 μg/adult), 1-octen-3-ol (LD50 = 13.52 μg/adult), and 3-octanol (LD50 = 17.45 μg/adult) showed significant contact toxicity against T. castaneum. Acetophenone (LD50 = 7.07 μg/adult) and ρ-cymen-7-ol (LD50 = 8.42 μg/adult) showed strong contact toxicity against L. serricorne. ρ-Cymene (LC50 = 10.91 mg/L air) and ρ-cymen-7-ol (LC50 = 10.47 mg/L air) showed powerful fumigant toxicity to T. castaneum. Limonene (LC50 = 5.56 mg/L air), acetophenone (LC50 = 5.47 mg/L air), and 3-octanol (LC50 = 5.05 mg/L air) showed obvious fumigant toxicity against L. serricorne. In addition, the EO and its chemical compounds possessed different levels of repellent activity. This work provides some evidence of the value of exploring these materials for insecticidal activity, for human health purposes. We suggest that the EO extracted from E. densa may have the potential to be developed as an insecticidal agent against stored product insect pests.


2015 ◽  
Vol 80 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Ying Wang ◽  
Chun You ◽  
Kai Yang ◽  
Ran Chen ◽  
Wen Zhang ◽  
...  

The aim of this research was to determine the chemical constituents and toxicities of essential oil derived from Alpinia blepharocalyx rhizomes against the cigarette beetle, Lasioderma serricorne (Fabricius). Essential oil of A. blepharocalyx rhizomes was obtained from hydrodistillation and was investigated by Gas Chromatography-Mass Spectrometry (GC-MS). A total of 46 components of the essential oil of A. blepharocalyx rhizomes were identified. The principal compounds in A. blepharocalyx essential oil were camphor (23.13%), sabinene (11.27%), ?-pinene (9.81%) and eucalyptol (8.86%) followed by camphene (8.05%), sylvestrene (5.61%) and ?-phellandrene (5.00%). Among them, the four active constituents, predicted with a bioactivity-test, were isolated and identified as camphor, sabinene, ?-pinene and eucalyptol. The essential oil of A. blepharocalyx possessed strong contact toxicity against the cigarette beetle with LD50 value of 15.02 ?g adult-1, and also exhibited strong fumigant toxicity against L. serricorne adults with LC50 value of 3.83 mg L-1 air. The results indicate that the essential oil of A. blepharocalyx shows potential in terms of contact and fumigant toxicities against stored product insects.


2013 ◽  
Vol 37 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Patrícia Fontes Pinheiro ◽  
Vagner Tebaldi de Queiroz ◽  
Vando Miossi Rondelli ◽  
Adilson Vidal Costa ◽  
Tiago de Paula Marcelino ◽  
...  

The thrips, Frankliniella schultzei, and green peach aphid, Myzus persicae, cause direct damage to plants of economic importance and transmit phytoviruses, causing large economic losses. Chemical constituents of essential oils present a wide range of biological activities. The aim of this work was to evaluate insecticidal activity of essential oil from citronella grass, Cymbopogon winterianus, on F. schultzei and M. persicae. This essential oil was obtained by steam distillation and components were identified by GC/FID and GC/MS. A Potter spray tower was used to spray insects with the essential oil. The major constituents are geraniol (28.62%), citronellal (23.62%) and citronellol (17.10%). Essential oil of C. winterianus at 1% (w v-1) causes mortality in F. schultzei and M. persicae at 34.3% and 96.9%, respectively. The LC50 value for M. persicae was 0.36% and LC90 0.66%. Thus, citronella grass essential oil at 1% (w v-1) is more toxic to M. persicae than F. schultzei. This essential oil shows promise for developing pesticides to manage M. persicae.


Author(s):  
Shanshan Gao ◽  
Haidi Sun ◽  
Jiahao Zhang ◽  
Yonglei Zhang ◽  
Peipei Sun ◽  
...  

Abstract Uridine diphosphate glucosyltransferases (UGTs), which are phase II detoxification enzymes, are found in various organisms. These enzymes play an important role in the detoxification mechanisms of plant allelopathy and in insects. Artemisia vulgaris L. (Asterales: Asteraceae: Artemisia) essential oil has strong contact toxicity to Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) larvae. However, the effect of A. vulgaris essential oil on UGTs is unclear. In this study, A. vulgaris essential oil was shown to significantly induce the expression of the TcUgt86Dg transcript. Furthermore, treatment of TcUgt86Dg-silenced individuals with A. vulgaris essential oil resulted in higher mortality than for the control individuals, indicating that TcUgt86Dg is involved in detoxification of A. vulgaris essential oil in T. castaneum. The developmental expression profile showed that the expression of TcUgt86Dg in late adults was higher than in other developmental stages. Furthermore, the expression profile in adult tissues revealed higher expression of TcUgt86Dg in the head, antenna, fat body, and accessory gland than in other tissues. These data show that TcUgt86Dg may be involved in the metabolism of exogenous toxins by T. castaneum; thus, our results have elucidated one possible mechanism of resistance to A. vulgaris essential oil and provide a theoretical basis for a control scheme for T. castaneum.


2017 ◽  
Vol 47 (1) ◽  
Author(s):  
Juliana Dantas de Oliveira ◽  
Daniely Karen Matias Alves ◽  
Mayker Lazaro Dantas Miranda ◽  
José Milton Alves ◽  
Marcelo Nogueira Xavier ◽  
...  

ABSTRACT: Campomanesia adamantium is a native fruit species of the Cerrado and is used in food and medicines and as bee pasture. The chemical composition of essential oils obtained from plants of the same species have varying constituent proportions due to the influence of extractive factors, environmental, genetic and ontogenetic. This study aimed to identify the influence of hydrodistillation time on the content and chemical composition of essential oil extracted from the leaves of C. adamantium . Treatments consisted of five extraction times (1, 2, 3, 4, and 5h) using Clevenger with five replications in a completely randomized design. It was observed that after two hours of hydrodistillation, the essential oil content remains constant. Regarding the chemical constituents of essential oil, variation of the proportions of the compounds tested occurred at all hydrodistillation times. The compounds spathulenol oxygenated sesquiterpenes and caryophyllene oxide were the majority in the five hydrodistillation times.


2020 ◽  
Vol 9 (11) ◽  
pp. e90091110489
Author(s):  
Raul Apolinário ◽  
Jeane Nogueira ◽  
Meiriellem G. da Silveira Costa ◽  
Jacenir Santos-Mallet ◽  
Marcelo Guerra Santos ◽  
...  

Studies were carried out to evaluate the insecticidal activity of Pilocarpus spicatus Saint-Hilaire (Rutaceae) essential oil (EO) on the development of the Hemiptera Dysdercus peruvianus (Guérin-Méneville, 1831) and Oncopeltus fasciatus (Dallas, 1852). Gas Chromatography/Mass spectrometry analysis revealed a chemical composition with sabinene (32.27%) and sylvestrene (27.26%) as major constituents. Topical and continuous treatment with the pure EO induced 100% of mortality while serial dilutions of the EO induced different levels of lethality in a dose response manner. Median lethal dose (LD50) and lethal dose 90% (LD90) were determined. Malformations in insects and permanent or supernumerary nymphs were often observed after treatments, and the use of scanning electron microscopy allowed the analysis of morphological changes. The different biological effects of P. spicatus EO point out its potential as a rich source of bioactive molecules to be used as an alternative control method against agricultural pest insects.


Sign in / Sign up

Export Citation Format

Share Document