scholarly journals CARs—A New Perspective to HCMV Treatment

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1563
Author(s):  
Christopher Bednar ◽  
Armin Ensser

Human cytomegalovirus (HCMV), by primary infection or reactivation, represents a great risk for immune-suppressed or compromised patients. In immunocompetent humans, the immune system suppresses the spread of HCMV during an infection, resulting in a mostly asymptomatic or mild course of the disease, whereas in immune suppressed patients, the compromised host immune response cannot control the viral infection. Multiple viral immunomodulatory mechanisms additionally contribute to immune evasion. Use of chimeric antigen receptors (CARs), a treatment strategy adapted from cancer immunotherapy, is investigated for possible application to combat HCMV and other infections in immunocompromised patients. The administration of CAR+ T-cells directed against HCMV antigens can bypass viral immune evasion and may complement existing treatment methods. This review gives a short overview of HCMV, the obstacles of current treatment options as well as a brief introduction to CARs and the current research situation on CAR+ T-cells against HCMV.

2021 ◽  
Vol 15 ◽  
Author(s):  
Luke Maggs ◽  
Giulia Cattaneo ◽  
Ali Emre Dal ◽  
Ali Sanjari Moghaddam ◽  
Soldano Ferrone

Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in adults. Current treatment options typically consist of surgery followed by chemotherapy or more frequently radiotherapy, however, median patient survival remains at just over 1 year. Therefore, the need for novel curative therapies for GBM is vital. Characterization of GBM cells has contributed to identify several molecules as targets for immunotherapy-based treatments such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and CSPG4. Cytotoxic T lymphocytes collected from a patient can be genetically modified to express a chimeric antigen receptor (CAR) specific for an identified tumor antigen (TA). These CAR T cells can then be re-administered to the patient to identify and eliminate cancer cells. The impressive clinical responses to TA-specific CAR T cell-based therapies in patients with hematological malignancies have generated a lot of interest in the application of this strategy with solid tumors including GBM. Several clinical trials are evaluating TA-specific CAR T cells to treat GBM. Unfortunately, the efficacy of CAR T cells against solid tumors has been limited due to several factors. These include the immunosuppressive tumor microenvironment, inadequate trafficking and infiltration of CAR T cells and their lack of persistence and activity. In particular, GBM has specific limitations to overcome including acquired resistance to therapy, limited diffusion across the blood brain barrier and risks of central nervous system toxicity. Here we review current CAR T cell-based approaches for the treatment of GBM and summarize the mechanisms being explored in pre-clinical, as well as clinical studies to improve their anti-tumor activity.


Author(s):  
Jia Feng ◽  
Haichan Xu ◽  
Andrew Cinquina ◽  
Zehua Wu ◽  
Qi Chen ◽  
...  

AbstractWhile treatment for B-cell malignancies has been revolutionized through the advent of CAR immunotherapy, similar strategies for T-cell malignancies have been limited. Additionally, T-cell leukemias and lymphomas can commonly metastasize to the CNS, where outcomes are poor and treatment options are associated with severe side effects. Consequently, the development of safer and more effective alternatives for targeting malignant T cells that have invaded the CNS remains clinically important. CD5 CAR has previously been shown to effectively target various T-cell cancers in preclinical studies. As IL-15 strengthens the anti-tumor response, we have modified CD5 CAR to secrete an IL-15/IL-15sushi complex. In a Phase I clinical trial, these CD5-IL15/IL15sushi CAR T cells were tested for safety and efficacy in a patient with refractory T-LBL with CNS infiltration. CD5-IL15/IL15sushi CAR T cells were able to rapidly ablate the CNS lymphoblasts within a few weeks, resulting in the remission of the patient’s lymphoma. Despite the presence of CD5 on normal T cells, the patient only experienced a brief, transient T-cell aplasia. These results suggest that CD5-IL15/IL15sushi CAR T cells may be a safe and useful treatment of T-cell malignancies and may be particularly beneficial for patients with CNS involvement.Graphical Abstract


2020 ◽  
Vol 21 (22) ◽  
pp. 8620
Author(s):  
Alain E. Andrea ◽  
Andrada Chiron ◽  
Stéphanie Bessoles ◽  
Salima Hacein-Bey-Abina

Immunoadoptive therapy with genetically modified T lymphocytes expressing chimeric antigen receptors (CARs) has revolutionized the treatment of patients with hematologic cancers. Although clinical outcomes in B-cell malignancies are impressive, researchers are seeking to enhance the activity, persistence, and also safety of CAR-T cell therapy—notably with a view to mitigating potentially serious or even life-threatening adverse events like on-target/off-tumor toxicity and (in particular) cytokine release syndrome. A variety of safety strategies have been developed by replacing or adding various components (such as OFF- and ON-switch CARs) or by combining multi-antigen-targeting OR-, AND- and NOT-gate CAR-T cells. This research has laid the foundations for a whole new generation of therapeutic CAR-T cells. Here, we review the most promising CAR-T cell safety strategies and the corresponding preclinical and clinical studies.


Blood ◽  
2011 ◽  
Vol 118 (23) ◽  
pp. 6050-6056 ◽  
Author(s):  
Chrystal U. Louis ◽  
Barbara Savoldo ◽  
Gianpietro Dotti ◽  
Martin Pule ◽  
Eric Yvon ◽  
...  

Abstract We generated MHC-independent chimeric antigen receptors (CARs) directed to the GD2 antigen expressed by neuroblastoma tumor cells and treated patients with this disease. Two distinguishable forms of this CAR were expressed in EBV-specific cytotoxic T lymphocytes (EBV-CTLs) and activated T cells (ATCs). We have previously shown that EBV-CTLs expressing GD2-CARs (CAR-CTLs) circulated at higher levels than GD2-CAR ATCs (CAR-ATCs) early after infusion, but by 6 weeks, both subsets became low or undetectable. We now report the long-term clinical and immunologic consequences of infusions in 19 patients with high-risk neuroblastoma: 8 in remission at infusion and 11 with active disease. Three of 11 patients with active disease achieved complete remission, and persistence of either CAR-ATCs or CAR-CTLs beyond 6 weeks was associated with superior clinical outcome. We observed persistence for up to 192 weeks for CAR-ATCs and 96 weeks for CAR-CTLs, and duration of persistence was highly concordant with the percentage of CD4+ cells and central memory cells (CD45RO+CD62L+) in the infused product. In conclusion, GD2-CAR T cells can induce complete tumor responses in patients with active neuroblastoma; these CAR T cells may have extended, low-level persistence in patients, and such persistence was associated with longer survival. This study is registered at www.clinialtrials.gov as #NCT00085930.


2018 ◽  
Vol 20 (11) ◽  
pp. 1429-1438 ◽  
Author(s):  
Stephen J Bagley ◽  
Arati S Desai ◽  
Gerald P Linette ◽  
Carl H June ◽  
Donald M O’Rourke

Abstract In patients with certain hematologic malignancies, the use of autologous T cells genetically modified to express chimeric antigen receptors (CARs) has led to unprecedented clinical responses. Although progress in solid tumors has been elusive, recent clinical studies have demonstrated the feasibility and safety of CAR T-cell therapy for glioblastoma. In addition, despite formidable barriers to T-cell localization and effector function in glioblastoma, signs of efficacy have been observed in select patients. In this review, we begin with a discussion of established obstacles to systemic therapy in glioblastoma and how these may be overcome by CAR T cells. We continue with a summary of previously published CAR T-cell trials in GBM, and end by outlining the key therapeutic challenges associated with the use of CAR T cells in this disease.


2021 ◽  
Vol 13 (575) ◽  
pp. eabb6295
Author(s):  
Max Jan ◽  
Irene Scarfò ◽  
Rebecca C. Larson ◽  
Amanda Walker ◽  
Andrea Schmidts ◽  
...  

Cell-based therapies are emerging as effective agents against cancer and other diseases. As autonomous “living drugs,” these therapies lack precise control. Chimeric antigen receptor (CAR) T cells effectively target hematologic malignancies but can proliferate rapidly and cause toxicity. We developed ON and OFF switches for CAR T cells using the clinically approved drug lenalidomide, which mediates the proteasomal degradation of several target proteins by inducing interactions between the CRL4CRBN E3 ubiquitin ligase and a C2H2 zinc finger degron motif. We performed a systematic screen to identify “super-degron” tags with enhanced sensitivity to lenalidomide-induced degradation and used these degradable tags to generate OFF-switch degradable CARs. To create an ON switch, we engineered a lenalidomide-inducible dimerization system and developed split CARs that required both lenalidomide and target antigen for activation. Subtherapeutic lenalidomide concentrations controlled the effector functions of ON- and OFF-switch CAR T cells. In vivo, ON-switch split CARs demonstrated lenalidomide-dependent antitumor activity, and OFF-switch degradable CARs were depleted by drug treatment to limit inflammatory cytokine production while retaining antitumor efficacy. Together, the data showed that these lenalidomide-gated switches are rapid, reversible, and clinically suitable systems to control transgene function in diverse gene- and cell-based therapies.


2021 ◽  
Author(s):  
Mighmig Simonian Gharghani ◽  
Miganoosh Simonian ◽  
Faezeh Bakhtiari ◽  
Mozhan Haji Ghaffari ◽  
Ghazaleh Fazli ◽  
...  

One of the main reasons that researchers pay enormous attention to immunotherapy is that, despite significant advances in conventional therapy approaches, breast cancer remains the leading cause of death from malignant tumors among women. Genetically modifying T cells with chimeric antigen receptors (CAR) is one of the novel methods that has exhibited encouraging activity with relative safety, further urging investigators to develop several CAR T cells to target overexpressed antigens in breast tumors. This article is aimed not only to present such CAR T cells and discuss their remarkable results but also indicates their shortcomings with the hope of achieving possible strategies for improving therapeutic response.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1539-1539
Author(s):  
Harjeet Singh ◽  
Mary Helen Huls ◽  
Margaret J. Dawson ◽  
Tiejuan Mi ◽  
Gianpietro Dotti ◽  
...  

Abstract T cells genetically modified to express CD19-specific chimeric antigen receptors (CARs) are being evaluated in early-phase clinical trials in patients with B-lineage malignancies. Therapeutic success is predicted by ability of infused CAR+ T cells to both persist and kill in an antigen-dependent fashion. The first of these dual goals can be achieved by altering the CAR molecule to provide T-cell survival signals through a chimeric CD28 endodomain (designated CD19RCD28). We now report that altering the culturing microenvironment with IL-21 improves antigen-dependent cytolysis of T cells when propagated on CD19+ artificial antigen presenting cells (aAPC) derived from K562. To test whether IL-21 acts in conjunction with CD28 signaling to support acquisition of redirected effector functions we electro-transferred quiescent T cells from peripheral blood with Sleeping Beauty system DNA plasmids to introduce CD19RCD28 CAR transposon. Selective outgrowth of CAR+ T cells was achieved on CD19+ aAPC that provide co-stimulation with the addition of exogenous IL-2 and/or IL-21. When IL-21 was present there was preferential numeric expansion of CD19-specific CD8+ T cells which lysed and produced IFN-g in response to CD19 (Figure). Furthermore, the CD8+CAR+ T cells displayed a central memory (CM) cell surface phenotype characterized as CD62L+ and CD28+. In contrast, genetically modified T cells propagated with exogenous IL-2 resulted in predominately CD19-specific CM CD4+ T cells. Thus, cytokines can be used to tailor the CD8/CD4 ratio of CAR+ T cells derived from peripheral blood. These data demonstrate that the dual goals of persistence and lysis can be achieved by altering CAR and the cytokine milieu and have implications for infusing CAR+ T cells in next-generation immunotherapy trials. Figure Figure


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 192-192
Author(s):  
Adrienne H. Long ◽  
Rimas J. Orentas ◽  
Crystal L. Mackall

Abstract Introduction Chimeric antigen receptors (CARs) provide a promising new approach for the adoptive immunotherapy of cancer. Though impressive antitumor activity has been observed with some CAR T cells, other CAR T cells demonstrate poor antitumor efficacy in vivo despite high cytolytic capacity in vitro due to poor expansion and persistence. Whether exhaustion of CAR T cells mirrors exhaustion that occurs naturally in chronically stimulated human T cells has not yet been studied. Here, we report that expression of select CD28 containing CARs in normal human T cells rapidly induces an exhausted state characterized by high PD-1 expression, poor persistence and poor antitumor efficacy, whereas other CARs do not induce this phenotype. Results Human T cells were expanded with anti-CD3/CD28 beads, and then transduced with a second-generation (CD28-CD3ζ) disialoganglioside 2 (GD2) specific CAR or a second-generation (CD28-CD3ζ) CD19 specific CAR. By day 7 of in vitro expansion, GD2 CAR T cells developed a metabolism more highly dependent on glycolysis compared to CD19 CAR T cells or untransduced controls. Neither CAR population was exposed to antigen during this expansion period. Using a Seahorse Extracellular Flux Analyzer, the ratio of glycolysis to oxidative phosphorylation rates (ECAR:OCR ratio) of GD2 CAR T cells was found to be double that of CD19 CAR T cells or controls on day 7. The highly glycolytic metabolism of GD2 CAR T cells was associated with an exhausted phenotype. GD2 CAR T cells expressed higher levels of PD-1, TIM-3 and LAG-3, and transcription repressor BLIMP-1, compared to CD19 CAR T cells or untransduced controls. Additionally, GD2 CAR T cells were poor cytokine producers, generating <10x lower levels of IL2, TNFα and IFNγ than CD19 CAR T cells upon in vitro co-incubation with a GD2+CD19+ osteosarcoma line (143B-CD19), despite maintaining comparable in vitro cytolytic ability. GD2 CAR T cells showed poor in vitro expansion and increased rates of apoptosis compared to controls. GD2 CAR T cells also did not persist and did not mediate antitumor effects against GD2+CD19+ tumors in a murine xenograft model in vivo, whereas CD19 CAR T cells completely eradicated CD19+ tumors and persisted in both the spleen and tumor compartments. To rule out the possibility that diminished cytokine production and in vivo efficacy was related to antigen specific effects, T cells were co-transduced with both the GD2 and CD19 CARs. Though single-transduced CD19 CAR T cells show no signs of an altered metabolism or exhaustion and have strong antitumor efficacy, CD19 CAR T cells co-transduced with the GD2 CAR demonstrate an exhausted phenotype and diminished antitumor efficacy similar to that of single-transduced GD2 CAR T cells. Thus, expression of the GD2 CAR confers a dominant exhausted phenotype in T cells, and prevents otherwise efficacious CARs from mediating strong antitumor effects. We hypothesized that chronic signaling of CD3ζ and CD28 via the GD2 CAR results in exhaustion. Interestingly, however, we did not identify GD2 expression in the culture system. Point mutations in the CAR antigen-binding site, though abrogating GD2 binding, did not prevent the development of exhaustion. Thus, we postulate that constitutive receptor signaling may occur via interactions between the framework regions of the CAR receptors. Importantly however, substitution of 4-1BB for the CD28 domain in the GD2 CAR substantially diminished PD-1 expression, one of the hallmark features of exhausted T cells. Conclusions We report that expression of a CD28 containing GD2 CAR induces both an altered metabolism and an exhausted state in human T cells, resulting in poor in vivo persistence and antitumor efficacy. We hypothesize that tonic signaling through the GD2 CAR induces this phenotype and have identified the CD28 domain as an important component contributing to this phenotype. Rapid induction of exhaustion mediated via a synthetic receptor provides a novel model system to identify mechanistic factors required for this phenotype in human T cells. Work is currently underway to molecularly define the basis for the exhaustion of GD2 CAR T cells and to probe a potential role for altered T cell metabolism as a contributor to T cell exhaustion in human T cells. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 68 (10) ◽  
pp. 1713-1719 ◽  
Author(s):  
Anja Feldmann ◽  
Claudia Arndt ◽  
Stefanie Koristka ◽  
Nicole Berndt ◽  
Ralf Bergmann ◽  
...  

Abstract The clinical application of immune effector cells genetically modified to express chimeric antigen receptors (CARs) has shown impressive results including complete remissions of certain malignant hematological diseases. However, their application can also cause severe side effects such as cytokine release syndrome (CRS) or tumor lysis syndrome (TLS). One limitation of currently applied CAR T cells is their lack of regulation. Especially, an emergency shutdown of CAR T cells in case of life-threatening side effects is missing. Moreover, targeting of tumor-associated antigens (TAAs) that are not only expressed on tumor cells but also on vital tissues requires the possibility of a switch allowing to repeatedly turn the activity of CAR T cells on and off. Here we summarize the development of a modular CAR variant termed universal CAR (UniCAR) system that promises to overcome these limitations of conventional CARs.


Sign in / Sign up

Export Citation Format

Share Document