scholarly journals Potential Antiviral Properties of Industrially Important Marine Algal Polysaccharides and Their Significance in Fighting a Future Viral Pandemic

Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1817
Author(s):  
Renu Geetha Bai ◽  
Rando Tuvikene

Over the decades, the world has witnessed diverse virus associated pandemics. The significant inhibitory effects of marine sulfated polysaccharides against SARS-CoV-2 shows its therapeutic potential in future biomedical applications and drug development. Algal polysaccharides exhibited significant role in antimicrobial, antitumor, antioxidative, antiviral, anticoagulant, antihepatotoxic and immunomodulating activities. Owing to their health benefits, the sulfated polysaccharides from marine algae are a great deal of interest globally. Algal polysaccharides such as agar, alginate, carrageenans, porphyran, fucoidan, laminaran and ulvans are investigated for their nutraceutical potential at different stages of infection processes, structural diversity, complexity and mechanism of action. In this review, we focus on the recent antiviral studies of the marine algae-based polysaccharides and their potential towards antiviral medicines.

2019 ◽  
Vol 25 (11) ◽  
pp. 1210-1235 ◽  
Author(s):  
Soraya Sajadimajd ◽  
Saeideh Momtaz ◽  
Pouya Haratipour ◽  
Fardous F. El-Senduny ◽  
Amin Iran Panah ◽  
...  

Background: Algal polysaccharide and oligosaccharide derivatives have been shown to possess a variety of therapeutic potentials and drug delivery applications. Algal polysaccharides contain sulfated sugar monomers derived from seaweed including brown, red, and green microalgae. Here, in this review, the recent progress of algal polysaccharides’ therapeutic applications as anticancer agents, as well as underlying cellular and molecular mechanisms was investigated. Moreover, recent progress in the structural chemistry of important polysaccharides with anticancer activities were illustrated. Methods: Electronic databases including “Scopus”, “PubMed”, and “Cochrane library” were searched using the keywords “cancer”, or “tumor”, or “malignancy” in title/abstract, along with “algae”, or “algal” in the whole text until July 2018. Only English language papers were included. Results: The most common polysaccharides involved in cancer management were sulfated polysaccharides, Fucoidans, Carageenans, and Ulvan from different species of algae that have been recognized in vitro and in vivo. The underlying anticancer mechanisms of algal polysaccharides included induction of apoptosis, cell cycle arrest, modulation of transduction signaling pathways, suppression of migration and angiogenesis, as well as activation of immune responses and antioxidant system. VEGF/VEGFR2, TGFR/Smad/Snail, TLR4/ROS/ER, CXCL12/ CXCR4, TGFR/Smad7/Smurf2, PI3K/AKT/mTOR, PBK/TOPK, and β-catenin/Wnt are among the main cellular signaling pathways which have a key role in the preventive and therapeutic effects of algal polysaccharides against oncogenesis. Conclusion: Algal polysaccharides play a crucial role in the management of cancer and may be considered the next frontier in pharmaceutical research. Further well-designed clinical trials are mandatory to evaluate the efficacy and safety of algal polysaccharides in patients with cancer.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 399 ◽  
Author(s):  
Ratih Pangestuti ◽  
Evi Siahaan ◽  
Se-Kwon Kim

Marine algae have received great attention as natural photoprotective agents due to their unique and exclusive bioactive substances which have been acquired as an adaptation to the extreme marine environment combine with a range of physical parameters. These photoprotective substances include mycosporine-like amino acids (MAAs), sulfated polysaccharides, carotenoids, and polyphenols. Marine algal photoprotective substances exhibit a wide range of biological activities such as ultraviolet (UV) absorbing, antioxidant, matrix-metalloproteinase inhibitors, anti-aging, and immunomodulatory activities. Hence, such unique bioactive substances derived from marine algae have been regarded as having potential for use in skin care, cosmetics, and pharmaceutical products. In this context, this contribution aims at revealing bioactive substances found in marine algae, outlines their photoprotective potential, and provides an overview of developments of blue biotechnology to obtain photoprotective substances and their prospective applications.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 887 ◽  
Author(s):  
Mohamad Fawzi Mahomoodally ◽  
Devina Lobine ◽  
Kannan R. R. Rengasamy ◽  
Shanmugaraj Gowrishankar ◽  
Devesh Tewari ◽  
...  

Herpes simplex viruses (HSVs) are common human pathogens belonging to the subfamily alpha-herpesvirinae that trigger severe infections in neonates and immunocompromised patients. After primary infection, the HSVs establish a lifelong latent infection in the vegetative neural ganglia of their hosts. HSV infections contribute to substantial disease burden in humans as well as in newborns. Despite a fair number of drugs being available for the treatment of HSV infections, new, effective, and safe antiviral agents, exerting different mechanisms of action, are urgently required, mainly due to the increasing number of resistant strains. Accumulating pieces of evidence have suggested that structurally diverse compounds from marine algae possess promising anti-HSV potentials. Several studies have documented a variety of algal polysaccharides possessing anti-HSV activity, including carrageenan and fucan. This review aimed to compile previous anti-HSV studies on marine algae–derived compounds, especially sulfated polysaccharides, along with their mode of action, toward their development as novel natural anti-HSV agents for future investigations.


2019 ◽  
Vol 25 (11) ◽  
pp. 1147-1162 ◽  
Author(s):  
Ida Idayu Muhamad ◽  
Nabilah Zulkifli ◽  
Suguna a/p Selvakumaran ◽  
Nurul Asmak Md Lazim

Background: In recent decades, there has been an increased interest in the utilization of polysaccharides showing biological activity for various novel applications owing to their biocompatibility, biodegradability, non-toxicity, and some specific therapeutic activities. Increasing studies have started in the past few years to develop algal polysaccharides-based biomaterials for various applications. Methods: Saccharide mapping or enzymatic profiling plays a role in quality control of polysaccharides. Whereby, in vitro and in vivo tests as well as toxicity level discriminating polysaccharides biological activities. Extraction and purification methods are performed in obtaining algal derived polysaccharides followed by chromatographic profiles of their active compounds, structural features, physicochemical properties, and reported biological activities. Results: Marine algae are capable of synthesizing Glycosaminoglycans (GAGs) and non-GAGs or GAG mimetics such as sulfated glycans. The cell walls of algae are rich in sulfated polysaccharides, including alginate, carrageenan, ulvan and fucoidan. These biopolymers are widely used algal-derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. They constitute biochemical compounds that have multi-functionalization, therapeutic potential and immunomodulatory abilities, making them promising bioactive products and biomaterials with a wide range of biomedical applications. Conclusion: Algal-derived polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential that may create new opportunities. They could be maximally exploited to serve as therapeutic tools such as immunoregulatory agents or drug delivery vehicles. Hence, novel strategies could be applied to tailor multi-functionalization of the polysaccharides from algal species with vast biomedical application potentials.


2019 ◽  
Vol 26 (35) ◽  
pp. 6399-6411 ◽  
Author(s):  
Cláudia Nunes ◽  
Manuel A. Coimbra

Marine environments have a high quantity and diversity of sulfated polysaccharides. In coastal regions brown algae are the most abundant biomass producers and their cell walls have fucosecontaining sulfated polysaccharides (FCSP), known as fucans and/or fucoidans. These sulfated compounds have been widely researched for their biomedical properties, namely the immunomodulatory, haemostasis, pathogen inhibition, anti-inflammatory capacity, and antitumoral. These activities are probably due to their ability to mimic the carbohydrate moieties of mammalian glycosaminoglycans. Therefore, the FCSP are interesting compounds for application in health-related subjects, mainly for developing scaffolds for delivery systems or tissue regeneration. FCSP showed potential for these applications also due to their ability to form stable 3D structures with other polymers able to entrap therapeutic agents or cell and growth factors, besides their biocompatibility and biodegradability. However, for the clinical use of these biopolymers well-defined reproducible molecules are required in order to accurately establish relationships between structural features and human health applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1094
Author(s):  
Allan Radaic ◽  
Nam E. Joo ◽  
Soo-Hwan Jeong ◽  
Seong-II Yoo ◽  
Nicholas Kotov ◽  
...  

Prostate and breast cancer are the current leading causes of new cancer cases in males and females, respectively. Phosphatidylserine (PS) is an essential lipid that mediates macrophage efferocytosis and is dysregulated in tumors. Therefore, developing therapies that selectively restore PS may be a potential therapeutic approach for carcinogenesis. Among the nanomedicine strategies for delivering PS, biocompatible gold nanoparticles (AuNPs) have an extensive track record in biomedical applications. In this study, we synthesized biomimetic phosphatidylserine-caped gold nanoparticles (PS-AuNPs) and tested their anticancer potential in breast and prostate cancer cells in vitro. We found that both cell lines exhibited changes in cell morphology indicative of apoptosis. After evaluating for histone-associated DNA fragments, a hallmark of apoptosis, we found significant increases in DNA fragmentation upon PS-AuNP treatment compared to the control treatment. These findings demonstrate the use of phosphatidylserine coupled with gold nanoparticles as a potential treatment for prostate and breast cancer. To the best of our knowledge, this is the first time that a phosphatidylserine-capped AuNP has been examined for its therapeutic potential in cancer therapy.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2618
Author(s):  
Tatyana A. Kuznetsova ◽  
Boris G. Andryukov ◽  
Ilona D. Makarenkova ◽  
Tatyana S. Zaporozhets ◽  
Natalya N. Besednova ◽  
...  

Hemostasis disorders play an important role in the pathogenesis, clinical manifestations, and outcome of COVID-19. First of all, the hemostasis system suffers due to a complicated and severe course of COVID-19. A significant number of COVID-19 patients develop signs of hypercoagulability, thrombocytopenia, and hyperfibrinolysis. Patients with severe COVID-19 have a tendency toward thrombotic complications in the venous and arterial systems, which is the leading cause of death in this disease. Despite the success achieved in the treatment of SARS-CoV-2, the search for new effective anticoagulants, thrombolytics, and fibrinolytics, as well as their optimal dose strategies, continues to be relevant. The wide therapeutic potential of seaweed sulfated polysaccharides (PSs), including anticoagulant, thrombolytic, and fibrinolytic activities, opens up new possibilities for their study in experimental and clinical trials. These natural compounds can be important complementary drugs for the recovery from hemostasis disorders due to their natural origin, safety, and low cost compared to synthetic drugs. In this review, the authors analyze possible pathophysiological mechanisms involved in the hemostasis disorders observed in the pathological progression of COVID-19, and also focus the attention of researchers on seaweed PSs as potential drugs aimed to correction these disorders in COVID-19 patients. Modern literature data on the anticoagulant, antithrombotic, and fibrinolytic activities of seaweed PSs are presented, depending on their structural features (content and position of sulfate groups on the main chain of PSs, molecular weight, monosaccharide composition and type of glycosidic bonds, the degree of PS chain branching, etc.). The mechanisms of PS action on the hemostasis system and the issues of oral bioavailability of PSs, important for their clinical use as oral anticoagulant and antithrombotic agents, are considered. The combination of the anticoagulant, thrombolytic, and fibrinolytic properties, along with low toxicity and relative cheapness of production, open up prospects for the clinical use of PSs as alternative sources of new anticoagulant and antithrombotic compounds. However, further investigation and clinical trials are needed to confirm their efficacy.


2008 ◽  
Vol 151 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Faouzi Ben Rebah ◽  
Sana Smaoui ◽  
Fakher Frikha ◽  
Youssef Gargouri ◽  
Nabil Miled

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1492
Author(s):  
Francisco G. Blanco ◽  
Natalia Hernández ◽  
Virginia Rivero-Buceta ◽  
Beatriz Maestro ◽  
Jesús M. Sanz ◽  
...  

Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.


Sign in / Sign up

Export Citation Format

Share Document