scholarly journals African Swine Fever Virus pE199L Induces Mitochondrial-Dependent Apoptosis

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2240
Author(s):  
Tingting Li ◽  
Gaihong Zhao ◽  
Taoqing Zhang ◽  
Zhaoxia Zhang ◽  
Xin Chen ◽  
...  

African swine fever (ASF) is a severe hemorrhagic disease in swine characterized by massive lymphocyte depletion and cell death, with apoptosis and necrosis in infected lymphoid tissues. However, the molecular mechanism regarding ASFV-induced cell death remains largely unknown. In this study, 94 ASFV-encoded proteins were screened to determine the viral proteins involved in cell death in vitro, and pE199L showed the most significant effect. Ectopic expression of pE199L in porcine cells (CRL-2843) and human cells (HEK293T and HeLa cells) induced cell death remarkably, showing obvious shrinking, blistering, apoptotic bodies, and nuclear DNA fragments. Meanwhile, cell death was markedly alleviated when the expression of pE199L was knocked down during ASFV infection. Additionally, the expression of pE199L caused a loss of mitochondrial membrane potential, release of cytochrome C, and caspase-9 and -3/7 activation, indicating that the mitochondrial apoptotic pathway was involved in pE199L-induced apoptosis. Further investigations showed that pE199L interacted with several anti-apoptotic BCL-2 subfamily members (such as BCL-XL, MCL-1, BCL-W, and BCL-2A1) and competed with BAK for BCL-XL, which promoted BAK and BAX activation. Taken together, ASFV pE199L induces the mitochondrial-dependent apoptosis, which may provide clues for a comprehensive understanding of ASFV pathogenesis.

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1480
Author(s):  
Sabal Chaulagain ◽  
Gustavo A. Delhon ◽  
Sushil Khatiwada ◽  
Daniel L. Rock

African swine fever (ASF) is a hemorrhagic disease of swine characterized by massive lymphocyte depletion in lymphoid tissues due to the apoptosis of B and T cells, a process likely triggered by factors released or secreted by infected macrophages. ASFV CD2v (EP402R) has been implicated in viral virulence and immunomodulation in vitro; however, its actual function(s) remains unknown. We found that CD2v expression in swine PK15 cells induces NF-κB-dependent IFN-β and ISGs transcription and an antiviral state. Similar results were observed for CD2v protein treated swine PBMCs and macrophages, the major ASFV target cell. Notably, treatment of swine PBMCs and macrophages with CD2v protein induced apoptosis. Immunoprecipitation and colocalization studies revealed that CD2v interacts with CD58, the natural host CD2 ligand. Additionally, CD58 knockdown in cells or treatment of cells with an NF-κB inhibitor significantly reduced CD2v-mediated NF-κB activation and IFN-β induction. Further, antibodies directed against CD2v inhibited CD2v-induced NF-κB activation and IFN-β transcription in cells. Overall, results indicate that ASFV CD2v activates NF-κB, which induces IFN signaling and apoptosis in swine lymphocytes/macrophages. We propose that CD2v released from infected macrophages may be a significant factor in lymphocyte apoptosis observed in lymphoid tissue during ASFV infection in pigs.


2020 ◽  
Author(s):  
Sabal Chaulagain ◽  
Gustavo Delhon ◽  
Sushil Khatiwada ◽  
Daniel L. Rock

ABSTRACTAfrican swine fever (ASF) is a disease of swine characterized by massive lymphocyte depletion in lymphatic tissues due to apoptosis of B and T cells, most likely triggered by proteins or factors secreted by infected adjacent macrophages. Here we describe a role for the ASF virus (ASFV) protein CD2v in apoptosis induction in lymphocytes. CD2v is a viral homolog of host CD2 that has been implicated in viral virulence and immunomodulation in vitro; however, its actual function remains unknown. We show that CD2v is secreted into culture medium of CD2v-expressing swine cells; and expression of-or treatment with CD2v led to significant induction of IFN-β/ISGs transcription and antiviral state. CD2v expression led to enhanced NF-κB-p65 nuclear translocation in these cultures and incubation with a NF-κB inhibitor reduced CD2v-induced NF-κB-p65 nuclear translocation and IFN-β transcription. We show that CD2v binds CD58, the natural CD2 ligand, and that CD58 siRNA knock-down results in significant reduction in NF-κB-p65 nuclear translocation and IFN-β transcription. Treatment of swine PBMC with purified CD2v led to enhanced NF-κB-p65 nuclear translocation and induction of IFN-β transcription. Further, induction of caspase-3 and PARP1 cleavage was observed in these swine PBMC at later times, providing a mechanism for CD2v-induced apoptosis of lymphocytes. Finally, IFN-β induction and NF-κB activation was inhibited in swine PBMC treated with purified CD2v pre-incubated with antibodies against CD2v. Overall, our results indicate that ASFV CD2v is an immunomodulatory protein that, by promoting lymphocyte apoptosis, may contribute to bystander lymphocyte depletion observed during ASFV infection in pigs.IMPORTANCEASF, a severe hemorrhagic disease of domestic swine, represents a significant economic threat to swine industry worldwide. One critical pathological event observed in pigs infected with virulent isolates is an extensive destruction of lymphoid tissue and massive lymphocyte depletion. However, viral factor/s involved in this event are yet to be identified. Here we show that, by inducing NF-κB-dependent IFN signaling, ASFV CD2v is able to promote apoptosis in swine PBMC. We propose that CD2v released by ASFV-infected macrophages contributes to the massive depletion of lymphocytes observed in lymphoid tissues of infected pigs. Results here improve our understanding of ASFV pathogenesis and will encourage novel intervention approaches.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2468-2468
Author(s):  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Makoto Hamasaki ◽  
Raje Noopur ◽  
Kumar Shaji ◽  
...  

Abstract Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme required for the de novo synthesis of guanine nucleotides from IMP. VX-944 (Vertex Pharmaceuticals, Cambridge, MA) is a small molecule, selective, uncompetitive novel inhibitor directed against human IMPDH enzyme. IMPDH inhibitors have been demonstrated to induce growth arrest, and extensively investigated as immunosuppressants. Here we show that VX-944 inhibits growth of human multiple myeloma (MM) cell lines, including those resistant to conventional agents, via induction of apoptosis and S phase arrest in vitro. Interleukin-6, insulin-like growth factor-1, or co-culture with bone marrow stromal cells (BMSCs), do not protect against VX-944-induced MM cell growth inhibition. We next delineated the molecular mechanism of VX-944-induced MM cell death in the MM.1S human MM cell line. VX-944 induced apoptosis in MM.1S cells, confirmed by PARP cleavage as well as flow cytometric detection of the mitochondrial membrane protein 7A6 and TdT-mediated dUTP nick-end labelling (TUNEL) positive cells, without significant cleavage of caspases 3, 8 and 9. While the pan-caspase inhibitor z-VAD-fmk did not inhibit the VX-944-induced apoptosis and cell death suggesting that VX-944 triggers apoptosis in MM1.S cells primarily via caspase-independent pathway. Importantly, VX-944 augments the cytotoxicity of doxorubicin, melphalan and bortezomib, all of which activate caspases in MM cells and induce apoptosis, even in the presence of BMSCs. Taken together, our data demonstrate non-caspase-dependent apoptotic pathway triggered by VX-944 thereby providing a rationale to enhance MM cell cytotoxicity by combining this agent with conventional and/or novel agents which trigger caspase activation. Our ongoing studies are delineating the mechanisms whereby VX-944 induces MM cell apoptosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kentaro Masujin ◽  
Tomoya Kitamura ◽  
Ken -ichiro Kameyama ◽  
Kota Okadera ◽  
Tatsuya Nishi ◽  
...  

AbstractAfrican swine fever virus (ASFV) is the etiological agent of African swine fever (ASF), a fatal hemorrhagic disease of domestic pigs and wild boar. The virus primarily infects macrophage and monocyte host cells, these do not grow in vitro. Many attempts have been made to establish sustainable ASFV-sensitive cell lines, but which supported only low viral replication levels of limited, mostly artificially attenuated strains of ASFV. Here, we examined the competence of a novel cell line of immortalized porcine kidney macrophages (IPKM) for ASFV infection. We demonstrated that IPKM cells can facilitate high levels (> 107.0 TCID50/mL) of viral replication of ASFV, and hemadsorption reactions and cytopathic effects were observed as with porcine alveolar macrophages when inoculated with virulent field isolates: Armenia07, Kenya05/Tk-1, and Espana75. These results suggested that IPKM may be a valuable tool for the isolation, replication, and genetic manipulation of ASFV in both basic and applied ASF research.


2021 ◽  
pp. 105081
Author(s):  
Zhao Huang ◽  
Lang Gong ◽  
Zezhong Zheng ◽  
Qi Gao ◽  
Xiongnan Chen ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
Laia Bosch-Camós ◽  
Elisabet López ◽  
María Jesús Navas ◽  
Sonia Pina-Pedrero ◽  
Francesc Accensi ◽  
...  

The development of subunit vaccines against African swine fever (ASF) is mainly hindered by the lack of knowledge regarding the specific ASF virus (ASFV) antigens involved in protection. As a good example, the identity of ASFV-specific CD8+ T-cell determinants remains largely unknown, despite their protective role being established a long time ago. Aiming to identify them, we implemented the IFNγ ELISpot as readout assay, using as effector cells peripheral blood mononuclear cells (PBMCs) from pigs surviving experimental challenge with Georgia2007/1. As stimuli for the ELISpot, ASFV-specific peptides or full-length proteins identified by three complementary strategies were used. In silico prediction of specific CD8+ T-cell epitopes allowed identifying a 19-mer peptide from MGF100-1L, as frequently recognized by surviving pigs. Complementarily, the repertoire of SLA I-bound peptides identified in ASFV-infected porcine alveolar macrophages (PAMs), allowed the characterization of five additional SLA I-restricted ASFV-specific epitopes. Finally, in vitro stimulation studies using fibroblasts transfected with plasmids encoding full-length ASFV proteins, led to the identification of MGF505-7R, A238L and MGF100-1L as promiscuously recognized antigens. Interestingly, each one of these proteins contain individual peptides recognized by surviving pigs. Identification of the same ASFV determinants by means of such different approaches reinforce the results presented here.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1078 ◽  
Author(s):  
Albert Ros-Lucas ◽  
Florencia Correa-Fiz ◽  
Laia Bosch-Camós ◽  
Fernando Rodriguez ◽  
Julio Alonso-Padilla

African swine fever virus is the etiological agent of African swine fever, a transmissible severe hemorrhagic disease that affects pigs, causing massive economic losses. There is neither a treatment nor a vaccine available, and the only method to control its spread is by extensive culling of pigs. So far, classical vaccine development approaches have not yielded sufficiently good results in terms of concomitant safety and efficacy. Nowadays, thanks to advances in genomic and proteomic techniques, a reverse vaccinology strategy can be explored to design alternative vaccine formulations. In this study, ASFV protein sequences were analyzed using an in-house pipeline based on publicly available immunoinformatic tools to identify epitopes of interest for a prospective vaccine ensemble. These included experimentally validated sequences from the Immune Epitope Database, as well as de novo predicted sequences. Experimentally validated and predicted epitopes were prioritized following a series of criteria that included evolutionary conservation, presence in the virulent and currently circulating variant Georgia 2007/1, and lack of identity to either the pig proteome or putative proteins from pig gut microbiota. Following this strategy, 29 B-cell, 14 CD4+ T-cell and 6 CD8+ T-cell epitopes were selected, which represent a starting point to investigating the protective capacity of ASFV epitope-based vaccines.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1446
Author(s):  
Tingting Jin ◽  
Jun Lin ◽  
Yingchao Gong ◽  
Xukun Bi ◽  
Shasha Hu ◽  
...  

Both calcium-independent phospholipase A2 beta (iPLA2β) and endoplasmic reticulum (ER) stress regulate important pathophysiological processes including inflammation, calcium homeostasis and apoptosis. However, their roles in ischemic heart disease are poorly understood. Here, we show that the expression of iPLA2β is increased during myocardial ischemia/reperfusion (I/R) injury, concomitant with the induction of ER stress and the upregulation of cell death. We further show that the levels of iPLA2β in serum collected from acute myocardial infarction (AMI) patients and in samples collected from both in vivo and in vitro I/R injury models are significantly elevated. Further, iPLA2β knockout mice and siRNA mediated iPLA2β knockdown are employed to evaluate the ER stress and cell apoptosis during I/R injury. Additionally, cell surface protein biotinylation and immunofluorescence assays are used to trace and locate iPLA2β. Our data demonstrate the increase of iPLA2β augments ER stress and enhances cardiomyocyte apoptosis during I/R injury in vitro and in vivo. Inhibition of iPLA2β ameliorates ER stress and decreases cell death. Mechanistically, iPLA2β promotes ER stress and apoptosis by translocating to ER upon myocardial I/R injury. Together, our study suggests iPLA2β contributes to ER stress-induced apoptosis during myocardial I/R injury, which may serve as a potential therapeutic target against ischemic heart disease.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 177
Author(s):  
Jutta Pikalo ◽  
Paul Deutschmann ◽  
Melina Fischer ◽  
Hanna Roszyk ◽  
Martin Beer ◽  
...  

African swine fever virus (ASFV) causes a hemorrhagic disease in pigs with high socio-economic consequences. To lower the impact of disease incursions, early detection is crucial. In the context of experimental animal trials, we evaluated diagnostic workflows for a high sample throughput in active surveillance, alternative sample matrices for passive surveillance, and lateral flow devices (LFD) for rapid testing. We could demonstrate that EDTA blood is significantly better suited for early ASFV detection than serum. Tissues recommended by the respective diagnostic manuals were in general comparable in their performance, with spleen samples giving best results. Superficial lymph nodes, ear punches, and different blood swabs were also evaluated as potential alternatives. In summary, all matrices yielded positive results at the peak of clinical signs and could be fit for purpose in passive surveillance. However, weaknesses were discovered for some matrices when it comes to the early phase of infection or recovery. The antigen LFD showed variable results with best performance in the clinical phase. The antibody LFD was quite comparable with ELISA systems. Concluding, alternative approaches are feasible but have to be embedded in control strategies selecting test methods and sample materials following a “fit-for-purpose” approach.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 255
Author(s):  
Jingyuan Zhang ◽  
Yanyan Zhang ◽  
Teng Chen ◽  
Jinjin Yang ◽  
Huixian Yue ◽  
...  

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a major epidemic disease endangering the swine industry. Although a number of vaccine candidates have been reported, none are commercially available yet. To explore the effect of unknown genes on the biological characteristics of ASFV and the possibility of a gene-deleted isolate as a vaccine candidate, the strain SY18ΔL7-11, with deletions of L7L–L11L genes from ASFV SY18, was constructed, and its biological properties were analyzed. The results show that deletion of genes L7L-L11L did not affect replication of the virus in vitro. Virulence of SY18△L7-11 was significantly reduced, as 11 of the 12 pigs survived for 28 days after intramuscular inoculation with a low dose (103 TCID50) or a high dose (106 TCID50) of SY18ΔL7-11. All 11 surviving pigs were completely protected against challenge with the parental ASFV SY18 on 28 days postinoculation (dpi). Transient fever and/or irregularly low levels of genomic DNA in the blood were monitored in some pigs after inoculation. No ASF clinical signs or viremia were monitored after challenge. Antibodies to ASFV were induced in all pigs from 14 to 21 days postinoculation. IFN-γ was detected in most of the inoculated pigs, which is usually inhibited in ASFV-infected pigs. Overall, the results demonstrate that SY18ΔL7-11 is a candidate for further constructing safer vaccine(s), with better joint deletions of other gene(s) related to virulence.


Sign in / Sign up

Export Citation Format

Share Document