scholarly journals The Role of the Tumor Microenvironment in Developing Successful Therapeutic and Secondary Prophylactic Breast Cancer Vaccines

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 529 ◽  
Author(s):  
Benjamin Gordon ◽  
Vijayakrishna K. Gadi

Breast cancer affects roughly one in eight women over their lifetime and is a leading cause of cancer-related death in women. While outcomes have improved in recent years, prognosis remains poor for patients who present with either disseminated disease or aggressive molecular subtypes. Cancer immunotherapy has revolutionized the treatment of several cancers, with therapeutic vaccines aiming to direct the cytotoxic immune program against tumor cells showing particular promise. However, these results have yet to translate to breast cancer, which remains largely refractory from such approaches. Recent evidence suggests that the breast tumor microenvironment (TME) is an important and long understudied barrier to the efficacy of therapeutic vaccines. Through an improved understanding of the complex and biologically diverse breast TME, it may be possible to advance new combination strategies to render breast carcinomas sensitive to the effects of therapeutic vaccines. Here, we discuss past and present efforts to advance therapeutic vaccines in the treatment of breast cancer, the molecular mechanisms through which the TME contributes to the failure of such approaches, as well as the potential means through which these can be overcome.

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Mosteiro M ◽  
◽  
Cejuela M ◽  
Pernas S ◽  
◽  
...  

Check-point inhibitors have erupted as a treatment option for numerous kinds of neoplasms. Although there have been some achievements, the evidence supporting their use in breast cancer is scarce. Combinations with chemotherapy seem to provide better outcomes, and triple negative is the subtype most likely to benefit from them. New combination strategies are undergoing research to improve these results. Other approaches to determining biomarkers that identify which populations clearly benefit from these therapies are needed. Here, we review the clinical data of the role of immune check-point inhibitors in early and advanced breast cancer and present emerging strategies.


Author(s):  
Hariharan Jayaraman ◽  
Nalinkanth V. Ghone ◽  
Ranjith Kumaran R ◽  
Himanshu Dashora

: Mesenchymal stem cells because of its high proliferation, differentiation, regenerative capacity, and ease of availability have been a popular choice in cytotherapy. Mesenchymal Stem Cells (MSCs) have a natural tendency to home in a tumor microenvironment and acts against it, owing to the similarity of the latter to an injured tissue environment. Several studies have confirmed the recruitment of MSCs by tumor through various cytokine signaling that brings about phenotypic changes to cancer cells, thereby promoting migration, invasion, and adhesion of cancer cells. The contrasting results on MSCs as a tool for cancer cytotherapy may be due to the complex cell to cell interaction in the tumor microenvironment, which involves various cell types such as cancer cells, immune cells, endothelial cells, and cancer stem cells. Cell to cell communication can be simple or complex and it is transmitted through various cytokines among multiple cell phenotypes, mechano-elasticity of the extra-cellular matrix surrounding the cancer cells, and hypoxic environments. In this article, the role of the extra-cellular matrix proteins and soluble mediators that acts as communicators between mesenchymal stem cells and cancer cells has been reviewed specifically for breast cancer, as it is the leading member of cancer malignancies. The comprehensive information may be beneficial in finding a new combinatorial cytotherapeutic strategy using MSCs by exploiting the cross-talk between mesenchymal stem cells and cancer cells for treating breast cancer.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 623
Author(s):  
Brigida Anna Maiorano ◽  
Giovanni Schinzari ◽  
Davide Ciardiello ◽  
Maria Grazia Rodriquenz ◽  
Antonio Cisternino ◽  
...  

Background: In the last years, many new treatment options have widened the therapeutic scenario of genitourinary malignancies. Immunotherapy has shown efficacy, especially in the urothelial and renal cell carcinomas, with no particular relevance in prostate cancer. However, despite the use of immune checkpoint inhibitors, there is still high morbidity and mortality among these neoplasms. Cancer vaccines represent another way to activate the immune system. We sought to summarize the most recent advances in vaccine therapy for genitourinary malignancies with this review. Methods: We searched PubMed, Embase and Cochrane Database for clinical trials conducted in the last ten years, focusing on cancer vaccines in the prostate, urothelial and renal cancer. Results: Various therapeutic vaccines, including DNA-based, RNA-based, peptide-based, dendritic cells, viral vectors and modified tumor cells, have been demonstrated to induce specific immune responses in a variable percentage of patients. However, these responses rarely corresponded to significant survival improvements. Conclusions: Further preclinical and clinical studies will improve the knowledge about cancer vaccines in genitourinary malignancies to optimize dosage, select targets with a driver role for tumor development and growth, and finally overcome resistance mechanisms. Combination strategies represent possibly more effective and long-lasting treatments.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1160
Author(s):  
Giusi La Camera ◽  
Luca Gelsomino ◽  
Amanda Caruso ◽  
Salvatore Panza ◽  
Ines Barone ◽  
...  

Breast cancer is the most common solid malignancy diagnosed in females worldwide, and approximately 70% of these tumors express estrogen receptor α (ERα), the main biomarker of endocrine therapy. Unfortunately, despite the use of long-term anti-hormone adjuvant treatment, which has significantly reduced patient mortality, resistance to the endocrine treatments often develops, leading to disease recurrence and limiting clinical benefits. Emerging evidence indicates that extracellular vesicles (EVs), nanosized particles that are released by all cell types and responsible for local and systemic intercellular communications, might represent a newly identified mechanism underlying endocrine resistance. Unraveling the role of EVs, released by transformed cells during the tumor evolution under endocrine therapy, is still an open question in the cancer research area and the molecular mechanisms involved should be better defined to discover alternative therapeutic approaches to overcome resistance. In this review, we will provide an overview of recent findings on the involvement of EVs in sustaining hormonal resistance in breast cancer and discuss opportunities for their potential use as biomarkers to monitor the therapeutic response and disease progression.


2021 ◽  
Vol 22 (14) ◽  
pp. 7430
Author(s):  
Hiromi Sato ◽  
Ayaka Shimizu ◽  
Toya Okawa ◽  
Miaki Uzu ◽  
Momoko Goto ◽  
...  

The role of astrocytes in the periphery of metastatic brain tumors is unclear. Since astrocytes regulate central nervous metabolism, we hypothesized that changes in astrocytes induced by contact with cancer cells would appear in the metabolome of both cells and contribute to malignant transformation. Coculture of astrocytes with breast cancer cell supernatants altered glutamate (Glu)-centered arginine–proline metabolism. Similarly, the metabolome of cancer cells was also altered by astrocyte culture supernatants, and the changes were further amplified in astrocytes exposed to Glu. Inhibition of Glu uptake in astrocytes reduces the variability in cancer cells. Principal component analysis of the cancer cells revealed that all these changes were in the first principal component (PC1) axis, where the responsible metabolites were involved in the metabolism of the arginine–proline, pyrimidine, and pentose phosphate pathways. The contribution of these changes to the tumor microenvironment needs to be further pursued.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3357
Author(s):  
Hongmei Zheng ◽  
Sumit Siddharth ◽  
Sheetal Parida ◽  
Xinhong Wu ◽  
Dipali Sharma

Triple negative breast cancer (TNBC) is a heterogeneous disease and is highly related to immunomodulation. As we know, the most effective approach to treat TNBC so far is still chemotherapy. Chemotherapy can induce immunogenic cell death, release of damage-associated molecular patterns (DAMPs), and tumor microenvironment (TME) remodeling; therefore, it will be interesting to investigate the relationship between chemotherapy-induced TME changes and TNBC immunomodulation. In this review, we focus on the immunosuppressive and immunoreactive role of TME in TNBC immunomodulation and the contribution of TME constituents to TNBC subtype classification. Further, we also discuss the role of chemotherapy-induced TME remodeling in modulating TNBC immune response and tumor progression with emphasis on DAMPs-associated molecules including high mobility group box1 (HMGB1), exosomes, and sphingosine-1-phosphate receptor 1 (S1PR1), which may provide us with new clues to explore effective combined treatment options for TNBC.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5616
Author(s):  
Eugenia Fernandez ◽  
Luis Ubillos ◽  
Nabila Elgul ◽  
María Florencia Festari ◽  
Daniel Mazal ◽  
...  

Breast cancer is a public health concern and is currently the fifth cause of mortality worldwide. Identification of different biological subtypes is essential for clinical management; therefore, the role of pathologists is essential and useful tools for immunohistochemistry diagnosis are needed. Polypeptide-GalNAc-transferases are emerging novel biomarkers related to cancer behavior and GalNAc-T13, correlated with aggressiveness in some tumors, is an interesting candidate. Few monoclonal antibodies reacting with native proteins, and not affected by fixation and paraffin embedding, have been reported. The aim of this work was to develop a useful monoclonal antibody anti-GalNAc-T13 and to assess its potential significance in breast cancer diagnosis. We evaluated 6 human breast cancer cell lines, 338 primary breast tumors and 48 metastatic lymph nodes and looked for clinical significance correlating GalNAc-T13 expression with patients’ clinical features and survival. We found high GalNAc-T13 expression in 43.8% of the cases and observed a significant higher expression in metastatic lymph nodes, correlating with worse overall survival. We hypothesized several possible molecular mechanisms and their implications. We conclude that GalNAc-T13 may be a novel biomarker in breast cancer, useful for routine pathological diagnosis. Elucidation of molecular mechanisms related to aggressiveness should contribute to understand the role of GalNAc-T13 in breast cancer biology.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4576
Author(s):  
Hung-Yu Lin ◽  
Hui-Wen Ho ◽  
Yen-Hsiang Chang ◽  
Chun-Jui Wei ◽  
Pei-Yi Chu

Breast cancer (BC) is the most common malignancy among women worldwide. The discovery of regulated cell death processes has enabled advances in the treatment of BC. In the past decade, ferroptosis, a new form of iron-dependent regulated cell death caused by excessive lipid peroxidation has been implicated in the development and therapeutic responses of BC. Intriguingly, the induction of ferroptosis acts to suppress conventional therapy-resistant cells, and to potentiate the effects of immunotherapy. As such, pharmacological or genetic modulation targeting ferroptosis holds great potential for the treatment of drug-resistant cancers. In this review, we present a critical analysis of the current understanding of the molecular mechanisms and regulatory networks involved in ferroptosis, the potential physiological functions of ferroptosis in tumor suppression, its potential in therapeutic targeting, and explore recent advances in the development of therapeutic strategies for BC.


2018 ◽  
Vol 12 ◽  
pp. 117822341877480 ◽  
Author(s):  
Issam Makhoul ◽  
Mohammad Atiq ◽  
Ahmed Alwbari ◽  
Thomas Kieber-Emmons

The immune system plays a major role in cancer surveillance. Harnessing its power to treat many cancers is now a reality that has led to cures in hopeless situations where no other solutions were available from traditional anticancer drugs. These spectacular achievements rekindled the oncology community’s interest in extending the benefits to all cancers including breast cancer. The first section of this article reviews the biological foundations of the immune response to different subtypes of breast cancer and the ways cancer may overcome the immune attack leading to cancer disease. The second section is dedicated to the actual immune treatments including breast cancer vaccines, checkpoint inhibitors, monoclonal antibodies, and the “unconventional” immune role of chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document