scholarly journals Role of NKT Cells during Viral Infection and the Development of NKT Cell-Based Nanovaccines

Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 949
Author(s):  
Masood Alam Khan ◽  
Arif Khan

Natural killer T (NKT) cells, a small population of T cells, are capable of influencing a wide range of the immune cells, including T cells, B cells, dendritic cells and macrophages. In the present review, the antiviral role of the NKT cells and the strategies of viruses to evade the functioning of NKT cell have been illustrated. The nanoparticle-based formulations have superior immunoadjuvant potential by facilitating the efficient antigen processing and presentation that favorably elicits the antigen-specific immune response. Finally, the immunoadjuvant potential of the NKT cell ligand was explored in the development of antiviral vaccines. The use of an NKT cell-activating nanoparticle-based vaccine delivery system was supported in order to avoid the NKT cell anergy. The results from the animal and preclinical studies demonstrated that nanoparticle-incorporated NKT cell ligands may have potential implications as an immunoadjuvant in the formulation of an effective antiviral vaccine that is capable of eliciting the antigen-specific activation of the cell-mediated and humoral immune responses.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3878-3878
Author(s):  
Ilka Bondzio ◽  
Andreas Arendt ◽  
Jurgen Schmitz ◽  
Volker Huppert

Abstract Killer cell immunoglobulin-like receptors (KIRs) are known to modulate the cytotoxic ability of human Natural Killer (NK) cells, as well as a subset of T cells. To date, only a very small number of publications have discussed the role of KIRs on T cells, e.g. CMV-specific CD4+CD28-KIR+ cytotoxic T cells (van Bergen, J., J Immunol. 2004), so we investigated whether CD56+CD3+ NKT cells might also have KIR-positive subsets. Whole human blood as well as magnetically sorted human CD56+CD3+ NKT cells were analyzed for their expression of various KIR molecules using a novel panel of fluorochrome-conjugated, anti-KIR monoclonal antibodies (CD158a/h (KIR2DL1/DS1), CD158b (KIR2DL2), CD158e (KIR3DL1), CD158i (KIR2DS4), KIR2D; Miltenyi Biotec). KIR-positive CD56+CD3+ NKT cells were identified in every donor tested. Donors possessing NK cells of a specific KIR phenotype also possessed CD56+CD3+ NKT cells with the same KIR phenotype. KIRs were also expressed in a clonal fashion on CD56+CD3+ NKT cells, similarly to NK cells. The investigated KIRs were also shown to be expressed on unseparated NK and CD56+CD3+ NKT cells from whole blood. In addition, the ratio between KIR expression on NK and CD56+CD3+ NKT cells was calculated for each donor analyzed. The results show that there is no correlation between the frequencies of KIR expression on NK cells with that of CD56+CD3+ NKT cells. For example, the expression of CD158a/h in one donor was found to be the highest of all CD56+CD3+ NKT cells analyzed, but the lowest of all NK cells by comparison to the other donors tested. For all KIR phenotypes analyzed, the frequency of KIR+ NK cells was higher than the frequency of KIR+ CD56+CD3+ NKT cells in all samples (range: 1.1 to 25.3-fold higher). Interestingly, the frequency of KIR+ NK cells versus KIR+ CD56+CD3+ NKT cells differs significantly between donors: in one donor the frequency of KIR expression is between 7.3 to 25.3-fold higher in NK cells for multiple KIR phenotypes, while this range is more narrow in other donors (2.0–5.4-fold higher). The frequencies of CD56+CD3+ NKT cell subsets staining positive for particular KIRs differ significantly between donors, e.g. for CD158b, the number of positive CD56+CD3+ NKT cells fall within a range of 4.8% to 43.3%. For CD56+CD3+ NKT cells sorted with MACS® Technology, a similarly wide-ranging distribution of CD158b (KIR2DL2) expression was found (0.85%–5.82%), though at a lower level. Further research will be required to explore these differences as they may point to different mechanisms of KIR regulation. The identification of KIR-positive CD56+CD3+ NKT cells may also provide an opportunity for their use for functional KIR studies instead of NK cell clones, as the cloning of CD56+CD3+ NKT cells may prove easier (i.e. using standard T cell cloning methods) than that of NK cells.


2020 ◽  
Author(s):  
Henning Zelba ◽  
David Worbs ◽  
Johannes Harter ◽  
Natalia Pieper ◽  
Christina Kyzirakos-Feger ◽  
...  

Gaining detailed insights into the role of host immune responses in viral clearance is critical for understanding COVID-19 pathogenesis and future treatment strategies. While studies analyzing humoral immune responses against SARS-CoV-2 were available rather early during the pandemic, cellular immunity came into focus of investigations just recently. For the present work, we have adapted a protocol, designed for the detection of rare neoantigen-specific Memory T cells in cancer patients for studying cellular immune responses against SARS-CoV-2. Both, CD4+ and CD8+ T cells were detected after 6 days of in vitro expansion using overlapping peptide libraries representing the whole viral protein. The assay readout was an Intracellular cytokine staining and flow cytometric analysis detecting four functional markers simultaneously (CD154, TNF, IL-2, IFN-γ). We were able to detect SARS-CoV-2-specific T cells in 9 of 9 COVID-19 patients with mild symptoms. All patients had reactive T cells against at least one of 12 analyzed viral antigens and all patients had Spike-specific T cells. While some antigens were detected by CD4+ and CD8+ T cells, Membrane protein was mainly recognized by CD4+ T cells. Strikingly, we were not able to detect SARS-CoV-2-specific T cells in 9 unexposed healthy individuals. We are presenting a highly specific protocol for the detection of SARS-CoV-2-reactive T cells. Our data confirmed the important role of cellular immune responses in understanding SARS-CoV-2 clearance. We showed that Spike is the most immunogenic antigen. We have introduced Membrane protein as interesting target for studying humoral immune responses in convalescent COVID-19 patients.


Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2158-2162 ◽  
Author(s):  
Gillian A. Lang ◽  
T. Scott Devera ◽  
Mark L. Lang

Activation of natural killer-like T (NKT) cells with the CD1d ligand α-galactosylceramide enhances T-dependent humoral immune responses against coadministered T-dependent Ag. At present, there is little information on the mechanisms involved other than a dependence on CD1d expression by antigen-presenting cells and/or development of the NKT subset. We therefore tested the hypothesis that direct presentation of α-GC by B cells was required for NKT-enhanced Ab responses against T-dependent Ag. We reconstituted B cell–deficient μMT mice with B cells from C57Bl/6 donors or CD1d−/− donors before immunization with NP-KLH alone or NP-KLH mixed with α-GC. We made the surprising observation that B-cell expression of CD1d is absolutely required for the NKT-enhanced Ab response. Our data show that the mechanism by which NKT cells enhance humoral immune responses involves interaction with CD1d-expressing B cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Qiuting Fu ◽  
Qiankun Cui ◽  
Yi Yang ◽  
Xinghong Zhao ◽  
Xu Song ◽  
...  

Resveratrol, a polyphenolic plant antitoxin, has a wide range of pharmacological activities. In this study, we systematically evaluated the effects of resveratrol dry suspension (RDS) on immune function in piglets that were treated with different doses of RDS for 2 weeks. The results showed that the RDS has significant effects on the development, maturation, proliferation, and transformation of T lymphocytes. RDS could regulate humoral immune responses by upregulating the release of IFN-γ and downregulating the release of TNF-α. After piglets were vaccinated against classical swine fever virus and foot-and-mouth disease virus, the antibody titers were significantly increased. RDS treatment showed an excellent resistance to enhance T-SOD activity. Values of blood routine and blood biochemistry showed no toxicity. These results suggested that RDS could be considered as an adjuvant to enhance immune responses to vaccines, as well as dietary additives for animals to enhance humoral and cellular immunity.


Sign in / Sign up

Export Citation Format

Share Document