scholarly journals DNA and Protein Analyses to Confirm the Absence of Cross-Contamination and Support the Clinical Reliability of Extensively Hydrolysed Diets for Adverse Food Reaction-Pets

2018 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
Isabelle Lesponne ◽  
Jérôme Naar ◽  
Sébastien Planchon ◽  
Tommaso Serchi ◽  
Mauricio Montano
Author(s):  
Robson de Lima GOMES ◽  
Marlus da Silva PEDROSA ◽  
Claudio Heliomar Vicente da SILVA

ABSTRACT Since the outbreak of the Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), numerous restrictive measures have been adopted by governments of different countries. The return to elective dental care in Brazil is a reality even during the COVID-19 pandemic. During restorative dental procedures, the dental professional requires close contact with the patient, being exposed to contaminated saliva and fluids. In addition, transmission of COVID-19 by the generation of aerosol produced by dental handipieces may be possible. Thus, the dental staff must know how to act during restorative dental procedures, putting into practice the correct clinical protocols to avoid cross-contamination and COVID-19 spread. The purpose of this article is to review the literature on the biosafety practices especially in the context of restorative dental procedures in times of COVID-19.


Author(s):  
Yanhua Huang ◽  
Lei Zhu ◽  
Kenny Ong ◽  
Hanwei Teo ◽  
Younan Hua

Abstract Contamination in the gate oxide layer is the most common effect which cause the gate oxide integrate (GOI) issue. Dynamic Secondary Ion Mass Spectrometry (SIMS) is a mature tool for GOI contamination analysis. During the sample preparation, all metal and IDL layers above poly should be removed because the presence of these layers added complexity for the subsequent SIMS analysis. The normal delayering process is simply carried out by soaking the sample in the HF solution. However, the poly surface is inevitably contaminated by surroundings even though it is already a practice to clean with DI rinse and tape. In this article, TOFSIMS with low energy sputter gun is used to clean the sample surface after the normal delayering process. The residue signals also can be monitored by TOF SIMS during sputtering to confirm the cross contamination is cleared. After that, a much lower background desirable by dynamic SIMS. Thus an accurate depth profile in gate oxide layer can be achieved without the interference from surface.


2019 ◽  
Author(s):  
Ruixin Wang ◽  
Dongni Wang ◽  
Dekai Kang ◽  
Xusen Guo ◽  
Chong Guo ◽  
...  

BACKGROUND In vitro human cell line models have been widely used for biomedical research to predict clinical response, identify novel mechanisms and drug response. However, one-fifth to one-third of cell lines have been cross-contaminated, which can seriously result in invalidated experimental results, unusable therapeutic products and waste of research funding. Cell line misidentification and cross-contamination may occur at any time, but authenticating cell lines is infrequent performed because the recommended genetic approaches are usually require extensive expertise and may take a few days. Conversely, the observation of live-cell morphology is a direct and real-time technique. OBJECTIVE The purpose of this study was to construct a novel computer vision technology based on deep convolutional neural networks (CNN) for “cell face” recognition. This was aimed to improve cell identification efficiency and reduce the occurrence of cell-line cross contamination. METHODS Unstained optical microscopy images of cell lines were obtained for model training (about 334 thousand patch images), and testing (about 153 thousand patch images). The AI system first trained to recognize the pure cell morphology. In order to find the most appropriate CNN model,we explored the key image features in cell morphology classification tasks using the classical CNN model-Alexnet. After that, a preferred fine-grained recognition model BCNN was used for the cell type identification (seven classifications). Next, we simulated the situation of cell cross-contamination and mixed the cells in pairs at different ratios. The detection of the cross-contamination was divided into two levels, whether the cells are mixed and what the contaminating cell is. The specificity, sensitivity, and accuracy of the model were tested separately by external validation. Finally, the segmentation model DialedNet was used to present the classification results at the single cell level. RESULTS The cell texture and density were the influencing factors that can be better recognized by the bilinear convolutional neural network (BCNN) comparing to AlexNet. The BCNN achieved 99.5% accuracy in identifying seven pure cell lines and 86.3% accuracy for detecting cross-contamination (mixing two of the seven cell lines). DilatedNet was applied to the semantic segment for analyzing in single-cell level and achieved an accuracy of 98.2%. CONCLUSIONS This study successfully demonstrated that cell lines can be morphologically identified using deep learning models. Only light-microscopy images and no reagents are required, enabling most labs to routinely perform cell identification tests.


1988 ◽  
Vol 71 (3) ◽  
pp. 474-477 ◽  
Author(s):  
Duane D Hughes

Abstract A rapid method for the determination of dimetridazole and ipronidazole in feeds is described. The compounds are extracted from a borate buffer (pH 8.65) with benzene, partitioned into IN HC1, and then partitioned back into benzene from a basic aqueous phase. The benzene extract is concentrated and injected onto a nonpolar (Apiezon L) gas chromatographic column for determination by 63Ni electroncapture detection. Recoveries from feeds of various composition, spiked at 0.2 ppm with both dimetridazole and ipronidazole, ranged from 70 to 115%; for the same feeds spiked at 1 ppm or more, the recoveries were greater than 80%. Carbadox, furazolidone, levamisole, oxytetracycline, chlortetracycline, sulfamethazine, sulfaquinoxaline, arsanilic acid, piperazine, penicillin, and commonly added vitamins and minerals do not interfere. A 2-dimensional thin layer chromatographic system is presented as a means of additional identification.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1624
Author(s):  
Mario Forzan ◽  
Maria Irene Pacini ◽  
Marcello Periccioli ◽  
Maurizio Mazzei

Hepatitis E virus (HEV) is a waterborne and foodborne pathogen largely spread around the world. HEV is responsible for acute hepatitis in humans and it is also diffused in domestic and wild animals. In particular, domestic pigs represent the main reservoir of the infection and particular attention should be paid to the consumption of raw and undercooked meat as a possible zoonotic vehicle of the pathogen. Several studies have reported the presence of HEV in wild boar circulating in European countries with similar prevalence rates. In this study, we evaluated the occurrence of HEV in wild boar hunted in specific areas of Tuscany. Sampling was performed by collecting liver samples and also by swabbing the carcasses at the slaughterhouses following hunting activities. Our data indicated that 8/67 (12%) of liver samples and 4/67 (6%) of swabs were positive for HEV RNA. The presence of HEV genome on swabs indicates the possible cross-contamination of carcass surfaces during slaughtering procedures. Altogether, our data indicated that it is essential to promote health education programmes for hunters and consumers to limit the diffusion of the pathogen to humans.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 120
Author(s):  
Erin B. Perry ◽  
Dakota R. Discepolo ◽  
Stephen Y. Liang ◽  
Eileen K. Jenkins

Evidence-based canine decontamination protocols are underrepresented in the veterinary literature. Aerosolized microbiological and chemical contaminants can pose a risk in deployment environments highlighting the need for improved canine field decontamination strategies. Prior work has established the efficacy of traditional, water-intensive methods on contaminant removal from the coat of the working canine; however, it is not known if similar reductions can be achieved with simple field expedient methods when resources are limited. The objective of this study was to measure the reduction of aerosolized contamination via a practical “wipe-down” procedure performed on working canine coats contaminated with a fluorescent, non-toxic, water-based aerosol. Disposable, lint-free towels were saturated with one of three treatments: water, 2% chlorhexidine gluconate scrub (CHX), or 7.5% povidone-iodine scrub (PVD). Both CHX and PVD were diluted at a 1:4 ratio. Treatments were randomly assigned to one of three quadrants established across the shoulders and back of commonly utilized working dog breeds (Labrador retrievers, n = 16; German shepherds, n = 16). The fourth quadrant remained unwiped, thus serving as a control. Reduction in fluorescent marker contamination was measured and compared across all quadrants. PVD demonstrated greater marker reduction compared to CHX or water in both breeds (p < 0.0001). Reduction was similar between CHX or water in Labradors (p = 0.86) and shepherds (p = 0.06). Effective wipe-down strategies using common veterinary cleansers should be further investigated and incorporated into decontamination practices to safeguard working canine health and prevent cross-contamination of human personnel working with these animals.


Sign in / Sign up

Export Citation Format

Share Document