scholarly journals Antibiotic Therapy Does Not Alter the Humoral Response to Vaccination for Porcine Circovirus 2 in Weaned Pigs

2019 ◽  
Vol 6 (2) ◽  
pp. 51
Author(s):  
Jonathan E. Fogle ◽  
Jenna A. Scott ◽  
Glen W. Almond

Recent reports suggest that antibiotic therapy may either reduce or enhance the immune response to various porcine vaccines. Based upon these findings, we asked if antibiotic therapy alters immune cell populations, as measured by flow cytometry and/or vaccine-specific humoral immunity, as measured by sample to positive (S/P) antibody ratios. Here, we investigated the immuno-modulatory effects of enrofloxacin, ceftiofur, and tulathromycin on the immune response to a Mycoplasma hyopneumoniae (M. hyopneumoniae) and porcine circovirus type 2 (PCV-2) combination vaccine in weaned pigs. Maternal antibody likely interfered with the induction of immunity to M. hyopneumoniae. Antibiotic administration did not affect immune cell populations, as assessed by flow cytometry and did not affect the induction of humoral immunity to PCV-2.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 45.2-45
Author(s):  
I. Heggli ◽  
R. Schüpbach ◽  
N. Herger ◽  
T. A. Schweizer ◽  
A. Juengel ◽  
...  

Background:Modic type 1 changes (MC1) are vertebral bone marrow (BM) edema that associate with non-specific low back pain (LBP). Two etiologies have been described. In the infectious etiology the anaerobic aerotolerant Cutibacterium acnes (C. acnes) invades damaged intervertebral discs (IVDs) resulting in disc infection and endplate damage, which leads to the evocation of an immune response. In the autoinflammatory etiology disc and endplate damage lead to the exposure of immune privileged disc cells and matrix to leukocytes, thereby evoking an immune response in the BM. Different etiologies require different treatment strategies. However, it is unknown if etiology-specific pathological mechanisms exist.Objectives:The aim of this study was to identify etiology-specific dysregulated pathways of MC1 and to perform in-depth analysis of immune cell populations of the autoinflammatory etiology.Methods:BM aspirates and biopsies were obtained from LBP patients with MC1 undergoing spinal fusion. Aspirates/biopsies were taken prior screw insertion through the pedicle screw trajectory. From each patient, a MC1 and an intra-patient control aspiration/biopsy from the adjacent vertebral level was taken. If C. acnes in IVDs adjacent to MC1 were detected by anaerobic bacterial culture, patients were assigned to the infectious, otherwise to the autoinflammatory etiology.Total RNA was isolated from aspirates and sequenced (Novaseq) (infectious n=3 + 3, autoinflammatory n=5 + 5). Genes were considered as differentially expressed (DEG) if p-value < 0.01 and log2fc > ± 0.5. Gene ontology (GO) enrichment was performed in R (GOseq), gene set enrichment analysis (GSEA) with GSEA software.Changes in cell populations of the autoinflammatory etiology were analyzed with single cell RNA sequencing (scRNAseq): Control and MC1 biopsies (n=1 + 1) were digested, CD45+CD66b- mononuclear cells isolated with fluorescence activated cell sorting (FACS), and 10000 cells were sequenced (10x Genomics). Seurat R toolkit was used for quality-control, clustering, and differential expression analysis.Transcriptomic changes (n=5 + 5) of CD45+CD66b+ neutrophils isolated with flow cytometry from aspirates were analyzed as for total bulk RNAseq. Neutrophil activation (n=3 + 3) was measured as CD66b+ expression with flow cytometry. CD66bhigh and CD66blow fractions in MC1 and control neutrophils were compared with paired t-test.Results:Comparing MC1 to control in total bulk RNAseq, 204 DEG in the autoinflammatory and 444 DEG in the infectious etiology were identified with only 67 shared genes (Fig. 1a). GO enrichment revealed “T-cell activation” (p = 2.50E-03) in the autoinflammatory and “complement activation, classical pathway” (p=1.1E-25) in the infectious etiology as top enriched upregulated biological processes (BP) (Fig 1b). ScRNAseq of autoinflammatory MC1 showed an overrepresentation of T-cells (p= 1.00E-34, OR=1.54) and myelocytes (neutrophil progenitor cells) (p=4.00E-05, OR=2.27) indicating an increased demand of these cells (Fig. 1c). Bulk RNAseq analysis of neutrophils from the autoinflammatory etiology revealed an activated, pro-inflammatory phenotype (Fig 1d), which was confirmed with more CD66bhigh neutrophils in MC1 (+11.13 ± 2.71%, p=0.02) (Fig. 1e).Figure 1.(a) Venn diagram of DEG from total bulk RNAseq (b) Top enriched upregulated BP of autoinflammatory (left) and infectious (right) etiology (c) Cell clustering of autoinflammatory MC1 BM (d) Enrichment of “inflammatory response” gene set in autoinflammatory MC1 neutrophils (e) Representative histogram of CD66b+ expression in MC1 and control neutrophils.Conclusion:Autoinflammatory and infectious etiologies of MC1 have different pathological mechanisms. T-cell and neutrophil activation seem to be important in the autoinflammatory etiology. This has clinical implication as it could be explored for diagnostic approaches to distinguish the two MC1 etiologies and supports developing targeted treatments for both etiologies.Disclosure of Interests:None declared


2020 ◽  
Author(s):  
Qiang Liu ◽  
Yihang Qi ◽  
Jie Zhai ◽  
Xiangyi Kong ◽  
Xiangyu Wang ◽  
...  

Abstract Background Despite the promising impact of cancer immunotherapy targeting CTLA4 and PD1/PDL1, a large number of cancer patients fail to respond. LAG3 (Lymphocyte Activating 3), also named CD233, is a protein Coding gene served as alternative inhibitory receptors to be targeted in the clinic. The impact of LAG3 on immune cell populations and co-regulation of immune response in breast cancer remained largely unknown. Methods To characterize the role of LAG3 in breast cancer, we investigated transcriptome data and associated clinical information derived from a total of 2994 breast cancer patients. Results We observed that LAG3 was closely correlated with major molecular and clinical characteristics, and was more likely to be enriched in higher malignant subtype, suggesting LAG3 was a potential biomarker of triple-negative breast cancer. Furthermore, we estimated the landscape of relationship between LAG3 and ten types of cell populations in breast cancer. Gene ontology analysis revealed LAG3 were strongly correlated with immune response and inflammatory activities. We investigated the correlation pattern between LAG3 and immune modulators in pan-cancer, especially the synergistic role of LAG3 with other immune checkpoints members in breast cancer. Conclusions LAG3 expression was closely related to malignancy of breast cancer and might serve as a potential biomarker; LAG3 might plays an important role in regulating tumor immune microenvironment, not only T cells, but also other immune cells. More importantly, LAG3 might synergize with CTLA4, PD1/ PDL1 and other immune checkpoints, thereby lending more evidences to combination cancer immunotherapy by targeting LAG3, PD1/PDL1, and CTLA4 together.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1641
Author(s):  
William H. Gmeiner

Chemotherapy modulates the anti-tumor immune response and outcomes depend on the balance of favorable and unfavorable effects of drugs on anti-tumor immunity. 5-Florouracil (5-FU) is widely used in adjuvant chemotherapy regimens to treat colorectal cancer (CRC) and provides a survival benefit. However, survival remains poor for CRC patients with advanced and metastatic disease and immune checkpoint blockade therapy benefits only a sub-set of CRC patients. Here we discuss the effects of 5-FU-based chemotherapy regimens to the anti-tumor immune response. We consider how different aspects of 5-FU’s multi-factorial mechanism differentially affect malignant and immune cell populations. We summarize recent studies with polymeric fluoropyrimidines (e.g., F10, CF10) that enhance DNA-directed effects and discuss how such approaches may be used to enhance the anti-tumor immune response and improve outcomes.


2020 ◽  
pp. annrheumdis-2019-216786
Author(s):  
Margarita Ivanchenko ◽  
Gudny Ella Thorlacius ◽  
Malin Hedlund ◽  
Vijole Ottosson ◽  
Lauro Meneghel ◽  
...  

ObjectiveCongenital heart block (CHB) with immune cell infiltration develops in the fetus after exposure to maternal Ro/La autoantibodies. CHB-related serology has been extensively studied, but reports on immune-cell profiles of anti-Ro/La-exposed neonates are lacking. In the current study, we characterised circulating immune-cell populations in anti-Ro/La+mothers and newborns, and explored potential downstream effects of skewed neonatal cell populations.MethodsIn total, blood from mothers (n=43) and neonates (n=66) was sampled at birth from anti-Ro/La+ (n=36) and control (n=30) pregnancies with or without rheumatic disease and CHB. Flow cytometry, microarrays and ELISA were used for characterising cells and plasma.ResultsSimilar to non-pregnant systemic lupus erythematosus and Sjögren-patients, anti-Ro/La+mothers had altered B-cell subset frequencies, relative T-cell lymphopenia and lower natural killer (NK)-cell frequencies. Surprisingly, their anti-Ro/La exposed neonates presented higher frequencies of CD56dimCD16hi NK cells (p<0.01), but no other cell frequency differences compared with controls. Type I and II interferon (IFN) gene-signatures were revealed in neonates of anti-Ro/La+ pregnancy, and exposure of fetal cardiomyocytes to type I IFN induced upregulation of several NK-cell chemoattractants and activating ligands. Intracellular flow cytometry revealed IFNγ production by NK cells, CD8+ and CD4+ T cells in anti-Ro/La exposed neonates. IFNγ was also detectable in their plasma.ConclusionOur study demonstrates an increased frequency of NK cells in anti-Ro/La exposed neonates, footprints of type I and II IFN and an upregulation of ligands activating NK cells in fetal cardiac cells after type I IFN exposure. These novel observations demonstrate innate immune activation in neonates of anti-Ro/La+pregnancy, which could contribute to the risk of CHB.


2008 ◽  
Vol 29 (1) ◽  
pp. 137-143 ◽  
Author(s):  
Matthew C Loftspring ◽  
Jeremiah McDole ◽  
Aigang Lu ◽  
Joseph F Clark ◽  
Aaron J Johnson

Intracerebral hemorrhage (ICH) is a stroke subtype with high rates of mortality and morbidity. The immune system, particularly complement and cytokine signaling, has been implicated in brain injury after ICH. However, the cellular immunology associated with ICH has been understudied. In this report, we use flow cytometry to quantitatively profile immune cell populations that infiltrate the brain 1 and 4 days post-ICH. At 1 day CD45hi GR-1+ cells were increased 2.0-fold compared with saline controls ( P ≤ 0.05); however, we did not observe changes in any other cell populations analyzed. At 4 days ICH mice presented with a 2.4-fold increase in CD45hi cells, a 1.9-fold increase in CD45hi GR-1 cells, a 3.4-fold increase in CD45hi GR-1+ cells, and most notably, a 1.7-fold increase in CD4+ cells ( P ≤ 0.05 for all groups), compared with control mice. We did not observe changes in the numbers of CD8+ cells or CD45lo cells ( P = 0.43 and 0.49, respectively). Thus, we have shown the first use of flow cytometry to analyze leukocyte infiltration in response to ICH. Our finding of a CD4 T-cell infiltrate is novel and suggests a role for the adaptive immune system in the response to ICH.


1972 ◽  
Vol 136 (6) ◽  
pp. 1478-1483 ◽  
Author(s):  
Maurice E. Bush ◽  
Sefik S. Alkan ◽  
Danute E. Nitecki ◽  
Joel W. Goodman

L-Tyrosine-p-azobenzenearsonate (RAT) induces cellular immunity without humoral antibody in guinea pigs. Asymmetric bifunctional antigens composed of one RAT moiety and one dinitrophenyl (DNP) group separated by flexible spacers induce anti-RAT cellular immunity and an anti-DNP humoral response. Symmetrical bifunctional antigens of similar design but comprised of two RAT determinants induce cellular immunity without demonstrable anti-RAT antibody. However, when the flexible spacer is replaced by a rigid decaproline chain, humoral anti-RAT responses are provoked. Since RAT contains both electropositive (azo) and electronegative (arsonate) centers, the failure of bifunctional RAT compounds with flexible spacers to induce humoral immunity might be ascribed either to intramolecular stacking, which compromises their bifunctional character, or to interaction of both determinants with receptors on the same cell surface, which would fail to satisfy the requirement for cooperation. In order to distinguish between these alternatives, symmetrical bifunctional antigens composed of two L-tyrosine-p-azophenyltrimethylammonium (TAT) determinants separated by flexible or rigid spacers were synthesized. TAT is immunogenic and does not cross-react with RAT. Furthermore, it contains only electropositive centers and consequently bifunctional molecules do not undergo intramolecular stacking. Immunization with either flexibly or rigidly spaced bifunctional TAT antigens raised anti-TAT antibody. These results conclusively demonstrate that "self-help," cooperation between bone marrow-derived and thymus-derived lymphocytes of identical or similar specificity, can occur, provided the determinants on the antigen are prevented from associating with each other.


2019 ◽  
Author(s):  
Kelly J McKelvey ◽  
Amanda L Hudson ◽  
Ramyashree Prasanna Kumar ◽  
James S Wilmott ◽  
Grace H Attrill ◽  
...  

AbstractGlioblastoma, the most aggressive form of glioma, has a 5-year survival rate of <5%. While radiation and immunotherapies are routinely studied in the murine Gl261 glioma model, little is known about its inherent immune response. This study quantifies the temporal and spatial localization of immune cell populations and mediators during glioma development.Eight-week old male C57Bl/6 mice were orthotopically inoculated with 1×106 Gl261 cells and tumor morphology, local and systemic immune cell populations, and plasma cytokines/chemokines assessed at Day-0, 1, 3, 7, 14, and 21 post-inoculation by magnetic resonance imaging, chromogenic immunohistochemistry, multiplex immunofluorescent immunohistochemistry, flow cytometry and multiplex immunoassay respectively.From Day-3 tumors were distinguishable with >30% Ki67 and increased tissue vascularization (p<0.05). Increasing tumor proliferation/malignancy and vascularization were associated with significant temporal changes in immune cell populations within the tumor (p<0.05) and systemic compartments (p=0.02 to p<0.0001). Of note, at Day-14 16/24 plasma cytokine/chemokines levels decreased coinciding with an increase in tumor cytotoxic T cells, natural killer and natural killer/T cells. Data derived provide baseline characterization of the local and systemic immune response during glioma development. They reveal that type II macrophages and myeloid-derived suppressor cells are more prevalent in tumors than regulatory T cells, highlighting these cell types for further therapeutic exploration.


2021 ◽  
Author(s):  
Givanna Haryono Putri ◽  
Jonathan Chung ◽  
Davis N Edwards ◽  
Felix Marsh-Wakefield ◽  
Suat Dervish ◽  
...  

Mapping the dynamics of immune cell populations over time or disease-course is key to understanding immunopathogenesis and devising putative interventions. We present TrackSOM, an algorithm which delineates cellular populations and tracks their development over a time- or disease-course of cytometry datasets. We demonstrate TrackSOM-enabled elucidation of the immune response to West Nile Virus infection in mice, uncovering heterogeneous sub-populations of immune cells and relating their functional evolution to disease severity. TrackSOM is easy to use, encompasses few parameters, is quick to execute, and enables an integrative and dynamic overview of the immune system kinetics that underlie disease progression and/or resolution.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii105-ii106
Author(s):  
Michael Strong ◽  
Aqila Ahmed ◽  
Anda-Alexandra Calinescu ◽  
Xiaofeng Zhou ◽  
Tyler Robinson ◽  
...  

Abstract Roughly 400,000 people have bone metastases in the U.S. with the vast majority of these occurring in the spine. The etiology of bone metastasis still remains to be fully elucidated. This study explored the differences in immune landscape between long bone and spine that may contribute to higher rates of bone metastasis to the spine. Spines and femurs from male C57BL6/J mice (N=10) were processed for flow cytometry and immunophenotyping using Mass Cytometry by Time-Of-Flight (CyTOF). The cells were analyzed with CyTOF using a 33-surface protein marker mouse antibody panel. Spines (N=3) and femurs (N=2) from patients were analyzed with CyTOF using the Maxpar Complete Human T cell Immuno-Oncology Panel Set. There are global differences in the immune cell composition between the long bone and spine microenvironment. Flow cytometry revealed slight increases in the CD45+ and Cd11b+ cell populations in the bone marrow of murine spines compared to murine long bone, which are markers for myeloid-derived suppressor cells (MDSCs). Using CyTOF, significant differences in the immune cell landscape between long bone and spine were observed. In the murine long bone, an increase in monocytes/macrophages, myeloid progenitors, granulocytic MDSCs, granulocytes, and mast cells was observed compared to the spine. In the murine spine an elevation of CD8a+ DC cells, classical monocytes, MDSCs, pDCs, memory T helper cells, and NK T cells was seen. Evaluation of human long bone and spine revealed similar trends with a predominance of myeloid progenitor cells and monocytes in the human vertebra compared to the human long bone marrow. Significant differences in the immune microenvironment exist between the spine and long bone marrow in both murine and human samples. This is the first report of significant differences in immune cell populations between different skeletal locations. However, the functional significance of these differences has yet to be determined.


Sign in / Sign up

Export Citation Format

Share Document