scholarly journals Molecular Detection of Multidrug Resistant Staphylococcus aureus Isolated from Bovine Mastitis Milk in Bangladesh

2020 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Md. Salauddin ◽  
Mir Rowshan Akter ◽  
Md. Khaled Hossain ◽  
K. H. M. Nazmul Hussain Nazir ◽  
Ayman Noreddin ◽  
...  

The current study was conducted to isolate and identify multidrug-resistant Staphylococcus aureus (MDR-SA) from mastitis milk samples and to determine their antimicrobial susceptibility pattern. A total of 48 bovine mastitis (BM) milk samples were collected from different parts of the Rangpur division, Bangladesh. After the collection of milk samples, mastitis was confirmed using the California mastitis test. Isolation and identification of Staphylococcus aureus were performed using conventional cultural and biochemical tests as well as using molecular methods of PCR. Nucleotide sequence analysis of the 23S rRNA gene of Staphylococcus aureus was determined. The antibiogram of the isolated bacteria was conducted using the disc diffusion method. Phylogenetic analysis of 23S rRNA was done using MEGA 7, ClustalW multiple sequence alignment, and NCBI-BLAST tools, where the sequence of the isolate showed 98% to 99% identity. Antibiogram test using 15 antimicrobial agents showed that all of the Staphylococcus aureus isolates were classified as multidrug-resistant (MDR). It was found that the isolates were resistant to tetracycline, novobiocin, methicillin, vancomycin, and cephradine, and the isolates were sensitive to ciprofloxacin, azithromycin, norfloxacin, levofloxacin, gentamicin, and amoxicillin. The detection of MDR-SA in mastitis milk is alarming and represents a great public health concern. The findings of the present study help identify Staphylococcus aureus at the molecular level using 23S rRNA gene sequencing and will help select the appropriate and effective antimicrobial agent to control BM in the northern part of Bangladesh.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Nada K. Alharbi ◽  
Albandary Nasser Alsaloom

The objectives of this study were the selection of lactic acid bacteria (LAB) isolated from raw milk and studying their technological properties and antibacterial activities against bacteria as the cause of cattle mastitis. Biochemical and molecular identification using 16S–23S rRNA gene spacer analysis and 16S rRNA gene sequencing highlighted the presence of three species: Lactiplantibacillus plantarum, Lactococcus lactis, and Levilactobacillus brevis. The enzymatic characterization followed by the determination of technofunctional properties showed that LAB strains did not exhibit any hemolytic effect and were able to produce protease and lipase enzymes. Isolates showed very high antagonistic activity against Gram-positive and Gram-negative bacteria by producing H2O2, bacteriocin(s), and organic acid(s). APIZYM micromethod demonstrated that all selected strains are capable of producing valine arylamidase, cystine arylamidase, N-acetyl-β-glucosaminidase, and ᾳ-mannosidase. The antibiotic susceptibility assay showed that all selected strains were sensible to the majority of tested antibiotics. Based on these results, it can be concluded that the technological properties of the selected LAB allow considering their industrial use in order to formulate bioactive functional foods or drug(s).


2008 ◽  
Vol 52 (6) ◽  
pp. 1940-1944 ◽  
Author(s):  
Keith Miller ◽  
Alexander J. O'Neill ◽  
Mark H. Wilcox ◽  
Eileen Ingham ◽  
Ian Chopra

ABSTRACT The development of resistance to linezolid (LZD) in gram-positive bacteria depends on the mutation of a single 23S rRNA gene, followed by homologous recombination and gene conversion of the other alleles. We sought to inhibit this process in Staphylococcus aureus using a range of antibacterial agents, including some that suppress recombination. A model for the rapid selection of LZD resistance was developed which allowed the selection of LZD-resistant mutants with G2576T mutations in all five copies of the 23S rRNA gene following only 5 days of subculture. The emergence of LZD-resistant isolates was delayed by exposing cultures to low concentrations of various classes of antibiotics. All antibiotic classes were effective in delaying the selection of LZD-resistant mutants and, with the exception of fusidic acid (FUS) and rifampin (RIF), prolonged the selection window from 5 to ∼15 days. Inhibitors of DNA processing were no more effective than any other class of antibiotics at suppressing resistance development. However, the unrelated antimicrobials FUS and RIF were particularly effective at preventing the emergence of LZD resistance, prolonging the selection window from 5 to 25 days. The enhanced suppressive effect of FUS and RIF on the development of LZD resistance was lost in a recA-deficient host, suggesting that these drugs affect recA-dependent recombination. Furthermore, FUS and RIF were shown to be effective inhibitors of homologous recombination of a plasmid into the staphylococcal chromosome. We suggest that RIF or FUS in combination with LZD may have a role in preventing the emergence of LZD resistance.


2008 ◽  
Vol 52 (4) ◽  
pp. 1570-1572 ◽  
Author(s):  
Silke Besier ◽  
Albrecht Ludwig ◽  
Johannes Zander ◽  
Volker Brade ◽  
Thomas A. Wichelhaus

ABSTRACT Linezolid resistance in Staphylococcus aureus is typically associated with mutations in the 23S rRNA gene. Here we show that the accumulation of a single point mutation, G2576T, in the different copies of this gene causes stepwise increases in resistance, impairment of the biological fitness, and cross-resistance to quinupristin-dalfopristin and chloramphenicol.


2016 ◽  
Vol 15 (1) ◽  
pp. 65-76
Author(s):  
Zuzana Šramková ◽  
Barbora Vidová ◽  
Andrej Godány

Abstract Staphylococcal food poisoning represents one of the most frequently occurring intoxications, caused by staphylococcal enterotoxins (SE-s) and staphylococcal enterotoxin-like proteins (SEl-s). Therefore, there is a need for rapid, sensitive and specific detection method for this human pathogen and its toxin genes in food matrices. The present work is focused on Staphylococcus aureus detection by a nonaplex polymerase chain reaction, which targets the 23S rRNA gene for identification of S. aureus at the species level, genes for classical SE-s (SEA, SEC, SED), new SE-s (SEH, SEI), SEl-s (SEK, SEL) and tsst-1 gene (toxic shock syndrome toxin). Primers were properly designed to avoid undesirable interactions and to create a reliably identifiable profile of amplicons when visualized in agarose gel. According to obtained results, this approach is able to reach the detection sensitivity of 12 colony forming units from milk and meat matrices without prior culturing and DNA extraction.


2011 ◽  
Vol 74 (11) ◽  
pp. 1788-1796 ◽  
Author(s):  
KURSAT KAV ◽  
RAMAZAN COL ◽  
MUSTAFA ARDIC

The aim of this study was to investigate the presence of Staphylococcus aureus and staphylococcal enterotoxin (SE) genes in Urfa cheese samples and to characterize the enterotoxigenic potential of these isolates. From a total of 127 Urfa cheese samples, 53 isolates (from 41.7% of the samples) were identified by a species-specific PCR assay as S. aureus. Of these isolates, 40 (75.5%) gave positive PCR results for the 3′ end of the coa gene. The coa-positive S. aureus strains were characterized for their population levels and enterotoxigenic properties, including slime factor, β-lactamase, antibiotic susceptibilities, production of the classical SEs (SEA through SEE), in both cheese and liquid cultures by enzyme-linked immunosorbent assay (ELISA) and for the presence of specific genes, including classical SE genes (sea through see), mecA, femA, and spa, by PCR. The genetic relatedness among the coa-positive S. aureus isolates was investigated by PCR-based restriction fragment length polymorphism (RFLP) analysis and the 23S rRNA gene spacer. The 23S rRNA gene spacer and coa RFLP analysis using AluI and Hin6I revealed 14 different patterns. SEB, SEC, and SEA and SEE were detected by ELISA in three cheese samples. Fourteen S. aureus strains harbored enterotoxin genes sea through see, and three strains carried multiple toxin genes. The most commonly detected toxin gene was sec (25% of tested strains). Of the 40 analyzed S. aureus strains, 3 (7.5%) were mecA positive. Based on tandem repeats, four coa and spa types were identified. The results of this study indicate that S. aureus and SEs are present at significant levels in Urfa cheese. These toxins can cause staphylococcal food poisoning, creating a serious hazard for public health.


2020 ◽  
Vol 13 (12) ◽  
pp. 2736-2742
Author(s):  
Matlale Phriskey Mphahlele ◽  
James Wabwire Oguttu ◽  
Inge-Marie Petzer ◽  
Daniel Nenene Qekwana

Background and Aim: Staphylococcus aureus infections and antimicrobial resistance (AMR) in mastitis cases are both of clinical and economic importance. This study investigated the prevalence and AMR patterns of S. aureus isolated from composite milk samples of dairy cows submitted to the Onderstepoort Milk Laboratory for routine diagnosis. Materials and Methods: A total of 2862 cow milk samples randomly selected from submitted samples were tested for the presence of S. aureus using microbiological and biochemical tests. Confirmation of isolates was done using the analytical profile index. Antimicrobial susceptibility of S. aureus isolates against 12 antimicrobial agents was determined using the disk diffusion method. Results: S. aureus was isolated from 1.7% (50/2862) of the samples tested. All (100%) S. aureus isolates were resistant to at least one antimicrobial, while 62% (31/50) were resistant to three or more categories of antimicrobials (multidrug-resistant [MDR]). Most S. aureus isolates were resistant to erythromycin (62%; 31/50) and ampicillin (62%; 31/50). Almost half of S. aureus isolates were resistant to oxacillin (46%; 23/50) and only 8% (4/50) were resistant to cefoxitin. Conclusion: Although the prevalence of S. aureus among mastitis cases in this study was low, isolates exhibited high resistance to aminoglycosides, macrolides, and penicillins, all of which are important drugs in human medicine. The high prevalence of MDR S. aureus and the presence of methicillin resistance among S. aureus observed in this study are of both clinical and public health concerns.


1993 ◽  
Vol 175 (22) ◽  
pp. 7483-7487 ◽  
Author(s):  
A Wada ◽  
H Ohta ◽  
K Kulthanan ◽  
K Hiramatsu

2009 ◽  
Vol 53 (12) ◽  
pp. 5265-5274 ◽  
Author(s):  
Jeffrey B. Locke ◽  
Mark Hilgers ◽  
Karen Joy Shaw

ABSTRACT TR-700 (torezolid), the active moiety of the novel oxazolidinone phosphate prodrug TR-701, is highly potent against gram-positive pathogens, including strains resistant to linezolid (LZD). Here we investigated the potential of Staphylococcus aureus strains ATCC 29213 (methicillin-susceptible S. aureus [MSSA]) and ATCC 33591 (methicillin-resistant S. aureus [MRSA]) to develop resistance to TR-700. The spontaneous frequencies of mutation of MSSA 29213 and MRSA 33591 resulting in reduced susceptibility to TR-700 at 2× the MIC were 1.1 × 10−10 and 1.9 × 10−10, respectively. These values are ∼16-fold lower than the corresponding LZD spontaneous mutation frequencies of both strains. Following 30 serial passages in the presence of TR-700, the MIC for MSSA 29213 remained constant (0.5 μg/ml) while increasing eightfold (0.25 to 2.0 μg/ml) for MRSA 33591. Serial passage of MSSA 29213 and MRSA 33591 in LZD resulted in 64- and 32-fold increases in LZD resistance (2 to 128 μg/ml and 1 to 32 μg/ml, respectively). Domain V 23S rRNA gene mutations (Escherichia coli numbering) found in TR-700-selected mutants included T2500A and a novel coupled T2571C/G2576T mutation, while LZD-selected mutants included G2447T, T2500A, and G2576T. We also identified mutations correlating with decreased susceptibility to TR-700 and LZD in the rplC and rplD genes, encoding the 50S ribosomal proteins L3 and L4, respectively. L3 mutations included Gly152Asp, Gly155Arg, Gly155Arg/Met169Leu, and ΔPhe127-His146. The only L4 mutation detected was Lys68Gln. TR-700 maintained a fourfold or greater potency advantage over LZD against all strains with ribosomal mutations. These data bring to light a variety of novel and less-characterized mutations associated with S. aureus resistance to oxazolidinones and demonstrate the low resistance potential of torezolid.


Author(s):  
J G E Laumen ◽  
S S Manoharan-Basil ◽  
E Verhoeven ◽  
S Abdellati ◽  
I De Baetselier ◽  
...  

Abstract Background The prevalence of azithromycin resistance in Neisseria gonorrhoeae is increasing in numerous populations worldwide. Objectives To characterize the genetic pathways leading to high-level azithromycin resistance. Methods A customized morbidostat was used to subject two N. gonorrhoeae reference strains (WHO-F and WHO-X) to dynamically sustained azithromycin pressure. We tracked stepwise evolution of resistance by whole genome sequencing. Results Within 26 days, all cultures evolved high-level azithromycin resistance. Typically, the first step towards resistance was found in transitory mutations in genes rplD, rplV and rpmH (encoding the ribosomal proteins L4, L22 and L34 respectively), followed by mutations in the MtrCDE-encoded efflux pump and the 23S rRNA gene. Low- to high-level resistance was associated with mutations in the ribosomal proteins and MtrCDE efflux pump. However, high-level resistance was consistently associated with mutations in the 23S ribosomal RNA, mainly the well-known A2059G and C2611T mutations, but also at position A2058G. Conclusions This study enabled us to track previously reported mutations and identify novel mutations in ribosomal proteins (L4, L22 and L34) that may play a role in the genesis of azithromycin resistance in N. gonorrhoeae.


Author(s):  
Konrad Egli ◽  
Anna Roditscheff ◽  
Ursula Flückiger ◽  
Martin Risch ◽  
Lorenz Risch ◽  
...  

Abstract Background The resistance of Neisseria gonorrhoeae to ceftriaxone is unusual in Switzerland. The underlying genotype responsible for resistance is suspected to be novel. Generally, resistance in Neisseria gonorrhoeae (Ng) involves a comprehensive set of genes with many different mutations leading to resistance to different β-lactams and fluoroquinolones. Case presentation A patient had a positive result from specific PCR for Ng. We routinely culture all clinical specimens with a positive NG-PCR. In this particular case, we isolated a strain with resistance to ceftriaxone in Switzerland. A total of seven different genes (penA, ponA, porinB, mtr, gyrA, parC, 23S rRNA gene) in this strain were partially sequenced for comparison with phenotypic susceptibility testing. Interestingly, two different mutations in the porinB gene were observed, and data on this gene are limited. Information on the identified allele type of the penA gene is very limited as well. Three different mutations of parC and gyrA that correlate with ciprofloxacin resistance were found. The combination of ceftriaxone and ciprofloxacin resistance makes an appropriate treatment difficult to obtain due to multidrug resistance. Conclusion The combined results for all genes show the appearance of new mutations in central Europe either due to worldwide spread or the emergence of new genetic combinations of mutations.


Sign in / Sign up

Export Citation Format

Share Document