scholarly journals Assessment of Local Climate Change: Historical Trends and RCM Multi-Model Projections Over the Salento Area (Italy)

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 978 ◽  
Author(s):  
Marco D’Oria ◽  
Maria Tanda ◽  
Valeria Todaro

This study provides an up-to-date analysis of climate change over the Salento area (southeast Italy) using both historical data and multi-model projections of Regional Climate Models (RCMs). The accumulated anomalies of monthly precipitation and temperature records were analyzed and the trends in the climate variables were identified and quantified for two historical periods. The precipitation trends are in almost all cases not significant while the temperature shows statistically significant increasing tendencies especially in summer. A clear changing point around the 80s and at the end of the 90s was identified by the accumulated anomalies of the minimum and maximum temperature, respectively. The gradual increase of the temperature over the area is confirmed by the climate model projections, at short—(2016–2035), medium—(2046–2065) and long-term (2081–2100), provided by an ensemble of 13 RCMs, under two Representative Concentration Pathways (RCP4.5 and RCP8.5). All the models agree that the mean temperature will rise over this century, with the highest increases in the warm season. The total annual rainfall is not expected to significantly vary in the future although systematic changes are present in some months: a decrease in April and July and an increase in November. The daily temperature projections of the RCMs were used to identify potential variations in the characteristics of the heat waves; an increase of their frequency is expected over this century.

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 668
Author(s):  
Attila Kovács ◽  
András Jakab

The purpose of the present study was to develop a methodology for the evaluation of direct climate impacts on shallow groundwater resources and its country-scale application in Hungary. A modular methodology was applied. It comprised the definition of climate zones and recharge zones, recharge calculation by hydrological models, and the numerical modelling of the groundwater table. Projections of regional climate models for three different time intervals were applied for the simulation of predictive scenarios. The investigated regional climate model projections predict rising annual average temperature and generally dropping annual rainfall rates throughout the following decades. Based on predictive modelling, recharge rates and groundwater levels are expected to drop in elevated geographic areas such as the Alpokalja, the Eastern parts of the Transdanubian Mountains, the Mecsek, and Northern Mountain Ranges. Less significant groundwater level drops are predicted in foothill areas, and across the Western part of the Tiszántúl, the Duna-Tisza Interfluve, and the Szigetköz areas. Slightly increasing recharge and groundwater levels are predicted in the Transdanubian Hills and the Western part of the Transdanubian Mountains. Simulation results represent groundwater conditions at the country scale. However, the applied methodology is suitable for simulating climate change impacts at various scales.


Author(s):  
Camila Billerbeck ◽  
Ligia Monteiro da Silva ◽  
Silvana Susko Marcellini ◽  
Arisvaldo Méllo Junior

Abstract Regional climate models (RCM) are the main tools for climate change impacts assessment in hydrological studies. These models, however, often show biases when compared to historical observations. Bias Correction (BC) are useful techniques to improve climate projection outputs. This study presents a multi-criteria decision analysis (MCDA) framework to compare combinations of RCM with selected BC methods. The comparison was based on the modified Kling-Gupta efficiency (KGE’). The criteria evaluated the general capability of models in reproducing the observed data main statistics. Other criteria evaluated were the relevant aspects for hydrological studies, such as seasonality, dry and wet periods. We applied four BC methods in four RCM monthly rainfall outputs from 1961 to 2005 in the Piracicaba river basin. The Linear Scaling (LS) method showed higher improvements in the general performance of the models. The RCM Eta-HadGEM2-ES, corrected with Standardized Reconstruction (SdRc) method, achieved the best results when compared to the observed precipitation. The bias corrected projected monthly precipitation (2006-2098) preserved the main signal of climate change effects when compared to the original outputs regarding annual rainfall. However, SdRc produced significant decrease in monthly average rainfall, higher than 45% for July, August and September for RCP4.5 and RCP8.5 scenarios.


Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2017 ◽  
Vol 30 (20) ◽  
pp. 8275-8298 ◽  
Author(s):  
Melissa S. Bukovsky ◽  
Rachel R. McCrary ◽  
Anji Seth ◽  
Linda O. Mearns

Abstract Global and regional climate model ensembles project that the annual cycle of rainfall over the southern Great Plains (SGP) will amplify by midcentury. Models indicate that warm-season precipitation will increase during the early spring wet season but shift north earlier in the season, intensifying late summer drying. Regional climate models (RCMs) project larger precipitation changes than their global climate model (GCM) counterparts. This is particularly true during the dry season. The credibility of the RCM projections is established by exploring the larger-scale dynamical and local land–atmosphere feedback processes that drive future changes in the simulations, that is, the responsible mechanisms or processes. In this case, it is found that out of 12 RCM simulations produced for the North American Regional Climate Change Assessment Program (NARCCAP), the majority are mechanistically credible and consistent in the mean changes they are producing in the SGP. Both larger-scale dynamical processes and local land–atmosphere feedbacks drive an earlier end to the spring wet period and deepening of the summer dry season in the SGP. The midlatitude upper-level jet shifts northward, the monsoon anticyclone expands, and the Great Plains low-level jet increases in strength, all supporting a poleward shift in precipitation in the future. This dynamically forced shift causes land–atmosphere coupling to strengthen earlier in the summer, which in turn leads to earlier evaporation of soil moisture in the summer, resulting in extreme drying later in the summer.


2017 ◽  
Vol 13 (8) ◽  
pp. 1037-1048 ◽  
Author(s):  
Henrik Carlson ◽  
Rodrigo Caballero

Abstract. Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2–thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has  ∼  11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>


2021 ◽  
Author(s):  
David J. Peres ◽  
Alfonso Senatore ◽  
Paola Nanni ◽  
Antonino Cancelliere ◽  
Giuseppe Mendicino ◽  
...  

<p>Regional climate models (RCMs) are commonly used for assessing, at proper spatial resolutions, future impacts of climate change on hydrological events. In this study, we propose a statistical methodological framework to assess the quality of the EURO-CORDEX RCMs concerning their ability to simulate historic observed climate (temperature and precipitation). We specifically focus on the models’ performance in reproducing drought characteristics (duration, accumulated deficit, intensity, and return period) determined by the theory of runs at seasonal and annual timescales, by comparison with high-density and high-quality ground-based observational datasets. In particular, the proposed methodology is applied to the Sicily and Calabria regions (Southern Italy), where long historical precipitation and temperature series were recorded by the ground-based monitoring networks operated by the former Regional Hydrographic Offices. The density of the measurements is considerably greater than observational gridded datasets available at the European level, such as E-OBS or CRU-TS. Results show that among the models based on the combination of the HadGEM2 global circulation model (GCM) with the CLM-Community RCMs are the most skillful in reproducing precipitation and temperature variability as well as drought characteristics. Nevertheless, the ranking of the models may slightly change depending on the specific variable analysed, as well as the temporal and spatial scale of interest. From this point of view, the proposed methodology highlights the skills and weaknesses of the different configurations, aiding on the selection of the most suitable climate model for assessing climate change impacts on drought processes and the underlying variables.</p>


2020 ◽  
Vol 172 ◽  
pp. 02006
Author(s):  
Hamed Hedayatnia ◽  
Marijke Steeman ◽  
Nathan Van Den Bossche

Understanding how climate change accelerates or slows down the process of material deterioration is the first step towards assessing adaptive approaches for the preservation of historical heritage. Analysis of the climate change effects on the degradation risk assessment parameters like salt crystallization cycles is of crucial importance when considering mitigating actions. Due to the vulnerability of cultural heritage in Iran to climate change, the impact of this phenomenon on basic parameters plus variables more critical to building damage like salt crystallization index needs to be analyzed. Regional climate modelling projections can be used to asses the impact of climate change effects on heritage. The output of two different regional climate models, the ALARO-0 model (Ghent University-RMI, Belgium) and the REMO model (HZG-GERICS, Germany), is analyzed to find out which model is more adapted to the region. So the focus of this research is mainly on the evaluation to determine the reliability of both models over the region. For model validation, a comparison between model data and observations was performed in 4 different climate zones for 30 years to find out how reliable these models are in the field of building pathology.


2011 ◽  
Vol 11 (12) ◽  
pp. 3275-3291 ◽  
Author(s):  
M. Ruiz-Ramos ◽  
E. Sánchez ◽  
C. Gallardo ◽  
M. I. Mínguez

Abstract. Crops growing in the Iberian Peninsula may be subjected to damagingly high temperatures during the sensitive development periods of flowering and grain filling. Such episodes are considered important hazards and farmers may take insurance to offset their impact. Increases in value and frequency of maximum temperature have been observed in the Iberian Peninsula during the 20th century, and studies on climate change indicate the possibility of further increase by the end of the 21st century. Here, impacts of current and future high temperatures on cereal cropping systems of the Iberian Peninsula are evaluated, focusing on vulnerable development periods of winter and summer crops. Climate change scenarios obtained from an ensemble of ten Regional Climate Models (multimodel ensemble) combined with crop simulation models were used for this purpose and related uncertainty was estimated. Results reveal that higher extremes of maximum temperature represent a threat to summer-grown but not to winter-grown crops in the Iberian Peninsula. The study highlights the different vulnerability of crops in the two growing seasons and the need to account for changes in extreme temperatures in developing adaptations in cereal cropping systems. Finally, this work contributes to clarifying the causes of high-uncertainty impact projections from previous studies.


Sign in / Sign up

Export Citation Format

Share Document