scholarly journals Global Economic and Food Security Impacts of Demand-Driven Water Scarcity—Alternative Water Management Options for a Thirsty World

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1442 ◽  
Author(s):  
Victor Nechifor ◽  
Matthew Winning

Global freshwater demand will likely continue its expansion under current expectations of economic and population growth. Withdrawals in regions which are already water-scarce will impose further pressure on the renewable water resource base threatening the long-term availability of freshwater across the many economic activities dependent on this resource for various functions. This paper assesses the economy-wide implications of demand-driven water scarcity under a ‘middle-of-the-road’ socio-economic development pathway by considering the trade-offs between the macroeconomic and food security impacts. The study employs a global CGE model comprising an advanced level of detail regarding water uses across economic activities and which allows for a sector-specific endogenous adaptation to water scarcity. A sustainable withdrawal threshold is imposed in regions with extended river-basin overexploitation (India, South Asia, the Middle East, and Northern Africa) whilst different water management options are considered through four alternative allocation methods across users. The scale of macroeconomic effects is dependent on the relative size of sectors with low-water productivity, the amount of water uses in these sectors, and the flexibility of important water users to substitute away from water inputs in conditions of scarcity. The largest negative GDP deviations are obtained in scenarios with limited mobility to re-allocate water across users. A significant alleviation is obtained when demand patterns are shifted based on differences in water productivity, however, with a significant imposition on food security prospects.

2020 ◽  
Author(s):  
raffaella zucaro ◽  
veronica manganiello ◽  
marianna ferrigno

<p>According to European approach (art. 9 WFD 2000/60/EC), the collection of data relating to the quantification of water abstraction represents an important phase to promote efficiency in the use of water resources. Through the collection and subsequent study of the data provided, in fact, it is possible to apply a water pricing policy, based on the volumes currently used, to cope environmental sustainability and agricultural resilience to climate change, in a context of water scarcity. <br>In Italy, for agricultural sector, guidelines to collect and monitoring data are in force at national scale and detailed methodologies are applied at regional scale. A WebGIS platform called SIGRIAN (National Information System for Water Management in Agriculture (https://sigrian.crea.gov.it/sigrian/)), managed by CREA- Research Centre for Agricultural Policies and Bio-economy and realized in collaboration with Italian Regions, is adopted as national reference database for the collection and share of data resulting from the monitoring of water volumes for irrigation. <br>SIGRIAN also fits in the logic of Integrated Water Management (IWRM) approach. In order to coordinate the development and management of water and related resources, this platform is setup to link itself with Google satellites and Copernicus programme in order to obtain and process satellite information and earth observation data. In addition, SIGRIAN website (https://sigrian.crea.gov.it/index.php/cosesigrian/) provides an OPEN DATA section, ( in this section is possible to use a WMS (Web Map Service) Enquiry service and a WFS (Web Feature Service) Service, both related to the borders of authorities irrigation. <br>All data collected and monitored in this system are useful to support planning, programming and management processes of policy making and enforcement, such as CAP common indicators, water pricing based on water uses, monitoring and evaluation of investment programs, support economic analysis for Agricultural sector in the context of the Water framework directive.<br>Otherwise, SIGRIAN data can be useful to support the definition and application of Sustainability standards related to water use in agriculture through defining reference parameters for territories that uses water for irrigation in a sustainable way and in a multidisciplinary approach.<br>Keyword: SIGRIAN, irrigation volumes, sustainability standards, open data, monitoring, resilience.</p>


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1230 ◽  
Author(s):  
Maria do Rosário Cameira ◽  
Luís Santos Pereira

The main challenge faced by agriculture is to produce enough food for a continued increase in population, however in the context of ever-growing competition for water and land, climate change, droughts and anthropic water scarcity, and less-participatory water governance. Such a context implies innovative issues in agricultural water management and practices, at both the field and the system or the basin scales, mainly in irrigation to cope with water scarcity, environmental friendliness, and rural society welfare. Therefore, this special issue was set to present and discuss recent achievements in water, agriculture, and food nexus at different scales, thus to promote sustainable development of irrigated agriculture and to develop integrated approaches to water and food. Papers cover various domains including: (a) evapotranspiration and crop water use; (b) improving water management in irrigated agriculture, particularly irrigation scheduling; (c) adaptation of agricultural systems to enhance water use and water productivity to face water scarcity and climate change; (d) improving irrigation systems design and management adopting multi-criteria and risk approaches; (e) ensuring sustainable management for anthropic ecosystems favoring safe and high-quality food production, as well as the conservation of natural ecosystems; (f) assessing the impact of water scarcity and, mainly, droughts; (g) conservation of water quality resources, namely by preventing contamination with nitrates; (h) use of modern mapping technologies and remote sensing information; and (i) fostering a participative and inclusive governance of water for food security and population welfare.


Author(s):  
Yong Jiang

Water scarcity has long been recognized as a key issue challenging China’s water security and sustainable development. Economically, China’s water scarcity can be characterized by the uneven distribution of limited water resources across space and time in hydrological cycles that are inconsistent with the rising demand for a sufficient, stable water supply from rapid socioeconomic development coupled with a big, growing population. The limited water availability or scarcity has led to trade-offs in water use and management across sectors and space, while negatively affecting economic growth and the environment. Meanwhile, inefficiency and unsustainability prevail in China’s water use, attributable to government failure to account for the socioeconomic nature of water and its scarcity beyond hydrology. China’s water supply comes mainly from surface water and groundwater. The nontraditional sources, wastewater reclamation and reuse in particular, have been increasingly contributing to water supply but are less explored. Modern advancement in solar and nuclear power development may help improve the potential and competitiveness of seawater desalination as an alternative water source. Nonetheless, technological measures to augment water supply can only play a limited role in addressing water scarcity, highlighting the necessity and importance of nontechnological measures and “soft” approaches for managing water. Water conservation, including improving water use efficiency, particularly in the agriculture sector, represents a reasonable strategy that has much potential but requires careful policy design. China’s water management has started to pay greater attention to market-based approaches, such as tradable water rights and water pricing, accompanied by management reforms. In the past, these approaches have largely been treated as command-and-control tools for regulation rather than as economic instruments following economic design principles. While progress has been made in promoting the market-based approaches, the institutional aspect needs to be further improved to create supporting and enabling conditions. For water markets, developing regulations and institutions, combined with clearly defining water use rights, is needed to facilitate market trading of water rights. For water pricing, appropriate design based on the full cost of water supply needs to be strengthened, and policy implementation must be enforced. An integrated approach is particularly relevant and greatly needed for China’s water management. This approach emphasizes integration and holistic consideration of water in relation to other resource management, development opportunities, and other policies across scales and sectors to achieve synergy, cost-effectiveness, multiple benefits, and eventually economic efficiency. Integrated water management has been increasingly applied, as exemplified by a national policy initiative to promote urban water resilience and sustainability. While economics can play a critical role in helping evaluate and compare alternative measures or design scenarios and in identifying multiple benefits, there is a need for economic or social cost–benefit analysis of China’s water policy or management that incorporates nonmarket costs and benefits.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1881 ◽  
Author(s):  
Tafadzwanashe Mabhaudhi ◽  
Sylvester Mpandeli ◽  
Luxon Nhamo ◽  
Vimbayi Chimonyo ◽  
Charles Nhemachena ◽  
...  

Increasing agricultural productivity has always been a prominent feature on the regional agenda due to a high incidence of food and nutrition insecurity. This review assessed the current status of irrigated agriculture in southern Africa from a water–energy–food (WEF) nexus perspective. Gaps and opportunities for improving irrigated agriculture within the context of the WEF nexus were also assessed in terms of the feasible limits to which they can be exploited. Southern Africa faces water scarcity, and climate projections show that member states will face increased physical and/or economic water scarcity by as early as 2025, which will have negative impacts on water, energy and food production. Recurrent droughts experienced across the region reaffirm the sensitive issues of food and energy insecurity as well as water scarcity. Projections of an increasing population within the region indicate increased water, energy and food demand. With agriculture already accounting for about 70% of water withdrawals, increasing the area under irrigation will place additional demand on already strained energy grids and scarce water resources. This poses the question—is increasing irrigated agriculture a solution to improving water access, food security and energy supply? While there are prospects for increasing the area under irrigation and subsequent improvement in agricultural productivity, adopting a WEF nexus approach in doing so would mitigate trade-offs and unintended consequences. Consideration of the WEF nexus in integrated resources planning and management eliminates the possibilities of transferring problems from one sector to other, as it manages synergies and trade-offs. While it is acknowledged that improving water productivity in irrigated agriculture could reduce water and energy use while increasing yield output, there is a need to decide how such savings would then be reallocated. Any intervention to increase the irrigated area should be done in the context of a WEF nexus analytical framework to guide policy and decision-making. Technical planning should evolve around the WEF nexus approach in setting targets, as WEF nexus indicators would reveal the performance and impact of proposed interventions on any of the three WEF nexus components.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 439
Author(s):  
Abdoulaye Oumarou Abdoulaye ◽  
Haishen Lu ◽  
Yonghua Zhu ◽  
Yousef Alhaj Hamoud

Precise agricultural predictions of climate change effects on crop water productivity are essential to ensure food security and alleviate water scarcity. In this regard, the present study provides an overview of the future impacts of climate change on the irrigation of agricultural products such as rice, millet, maize, cassava, sorghum, and sugar cane. These crops are some of the most-consumed foodstuffs in countries of the Niger River basin. This study is realized throughout 2020 to 2080, and three Global Climate Models (GCMs) (CSIRO, MIROC5, and ECHAM. MPI-ESM-LR) have been used. The GCMs data have been provided by the IPCC5 database. The irrigation water requirement for each crop was calculated using Smith’s CROPWAT approach. The Penman–Monteith equation recommended by the FAO was used to calculate the potential evapotranspiration. The inter-annual results of the IWR, according to the set of models selected, illustrate that the largest quantities of water used for irrigation are generally observed between January and March, and the lowest quantities are the most often seen between July and September. The majority of models also illustrate a peak in the IWR between March and April. Sorghum and millet are the crops consuming the least amount of water for irrigation; followed by cassava, then rice and corn, and finally sugar cane. The most significant IWRs, which have been predicted, will be between 16.3 mm/day (MIROC5 model, RCP 4.5) and 45.9 mm/day (CSIRO model, RCP 4.5), particularly in Mali, Niger, Algeria, and rarely in Burkina-Faso (CSIRO model, RCP4.5 and 8.5). The lowest IWRs predicted by the models will be from 1.29 mm/day (MIROC5 model, RCP 4.5) to 33.4 mm/day (CSIRO model, RCP 4.5); they will be observed according to the models in Guinea, southern Mali, Ivory Coast, center and southern Nigeria, and Cameroon. However, models predict sugarcane to be the plant with the highest IWR, between 0.25 mm/day (Benin in 2020–2040) and 25.66 mm/day (Chad in 2060–2080). According to the models’ predictions, millet is the crop with the most IWR, between 0.20 mm/day (Benin from 2020 to 2060) and 19.37 mm/day (Chad in 2060–2080). With the results of this study, the countries belonging to the Niger River basin can put in place robust policies in the water resources and agriculture sectors, thus ensuring food security and high-quality production of staple crops, and avoiding water scarcity while facing the negative impacts of climate change.


2021 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
F. M. Ziadat ◽  
P. Zdruli ◽  
S. Christiansen ◽  
L. Caon ◽  
M. Abdel Monem ◽  
...  

Land degradation and desertification (LDD) and climate change are having increased effects in the Near East and North Africa (NENA) impacting the livelihoods of about 410 million people. Agriculture is a vital sector, contributing on average 14% to the Gross Domestic Product (GDP) (excluding oil producing countries) and providing jobs and incomes for 38% of the region’s economically active population. Nevertheless, most NENA countries import at least 50% of the calories they consume. Furthermore, it is estimated that the total area that is desertified or is vulnerable to desertification cover 9.84 million km2 or about 86.7% of the total NENA region. Soil erosion by water, wind, and sand and dust storms (SDS) cause losses of about USD 13 billion of GDP each year. To confront these hardships, the region must endorse proper land use planning, prioritization of target areas for restoration and adoption of sustainable land and water management (SLWM) to reverse the situation. This paper analyses the inter-linkages between LDD, resource base management and food security under different scenarios and offers mitigation and remediation options. These include knowledge management and sharing; establishment of a regional platform to facilitate dialogue; public and private investment opportunities; provision of tools to scale-out sustainable land and water management options; and creation of a conducive enabling environment supported by policies and strategies. The paper provides policy and decision-makers with priority actions and options to enhance productivity, and combat land degradation to improve food security in the region.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3628
Author(s):  
Dorota Pusłowska-Tyszewska

Allocating finite water resources between different water uses is always a challenging task. Searching for a solution which satisfies the water needs (requirements) of all water users without compromising the water requirements of river ecosystems calls for analyzing different water management options and their expected consequences. Water management balances are usually used for comparison of water resources with the needs of water users. When aquatic and water dependent ecosystems are considered in a similar manner as other users, searching for the optimum water resources allocation, without neglecting requirements of the natural environment, is possible. This paper describes basic modeling assumptions and methodological solutions, which allow for taking into account some tasks related to the protection of aquatic and water dependent ecosystems. The water balance model, developed for a catchment comprising the Warta Mouth National Park, was applied to find out whether supplying adequate amounts of water for conservation (or restoration) of wet meadows and wetland habitats in the area is possible, while still satisfying the demands of other water users.


2007 ◽  
Vol 7 (1) ◽  
pp. 261-267
Author(s):  
J.L. De la Peña ◽  
M. De la Peña ◽  
M. Salgot ◽  
Ll. Torcal

The history and water-related features in the Poblet Cistercian Monastery, located in Tarragona province, Spain are described. The study is undertaken with the main purpose of obtaining data for the establishment of an integrated water management system inside the walls of the abbey, which is suffering water scarcity due to increasing demands and the prevalent semiarid conditions.


Author(s):  
Jessica Fanzo

A major challenge for society today is how to secure and provide plentiful, healthy, and nutritious food for all in an environmentally sustainable and safe manner, while also addressing the multiple burdens of undernutrition, overweight and obesity, stunting and wasting, and micronutrient deficiencies, particularly for the most vulnerable. There are considerable ethical questions and trade-offs that arise when attempting to address this challenge, centered around integrating nutrition into the food security paradigm. This chapter attempts to highlight three key ethical challenges: the prioritization of key actions to address the multiple burdens of malnutrition, intergenerational justice issues of nutrition-impacted epigenetics, and the consequences of people’s diet choices, not only for humanity but also for the planet.


Sign in / Sign up

Export Citation Format

Share Document